Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

a+b=1 ab=-56
Тигезләмәне чишү өчен, x^{2}+x-56'ны x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын кулланып тапкырлагыз. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,56 -2,28 -4,14 -7,8
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -56 продуктын бирүче андый һәр парларны күрсәтегез.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Һәр пар өчен сумманы исәпләү.
a=-7 b=8
Чишелеш - 1 бирүче пар.
\left(x-7\right)\left(x+8\right)
Алынган кыйммәтләрне кулланып, \left(x+a\right)\left(x+b\right) тапкырланган аңлатманы яңадан языгыз.
x=7 x=-8
Тигезләмә чишелешләрен табу өчен, x-7=0 һәм x+8=0 чишегез.
a+b=1 ab=1\left(-56\right)=-56
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx-56 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,56 -2,28 -4,14 -7,8
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -56 продуктын бирүче андый һәр парларны күрсәтегез.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
Һәр пар өчен сумманы исәпләү.
a=-7 b=8
Чишелеш - 1 бирүче пар.
\left(x^{2}-7x\right)+\left(8x-56\right)
x^{2}+x-56-ны \left(x^{2}-7x\right)+\left(8x-56\right) буларак яңадан языгыз.
x\left(x-7\right)+8\left(x-7\right)
x беренче һәм 8 икенче төркемдә тапкырлау.
\left(x-7\right)\left(x+8\right)
Булу үзлеген кулланып, x-7 гомуми шартны чыгартыгыз.
x=7 x=-8
Тигезләмә чишелешләрен табу өчен, x-7=0 һәм x+8=0 чишегез.
x^{2}+x-56=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-1±\sqrt{1^{2}-4\left(-56\right)}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, 1'ны b'га һәм -56'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-56\right)}}{2}
1 квадратын табыгыз.
x=\frac{-1±\sqrt{1+224}}{2}
-4'ны -56 тапкыр тапкырлагыз.
x=\frac{-1±\sqrt{225}}{2}
1'ны 224'га өстәгез.
x=\frac{-1±15}{2}
225'нан квадрат тамырын чыгартыгыз.
x=\frac{14}{2}
Хәзер ± плюс булганда, x=\frac{-1±15}{2} тигезләмәсен чишегез. -1'ны 15'га өстәгез.
x=7
14'ны 2'га бүлегез.
x=-\frac{16}{2}
Хәзер ± минус булганда, x=\frac{-1±15}{2} тигезләмәсен чишегез. 15'ны -1'нан алыгыз.
x=-8
-16'ны 2'га бүлегез.
x=7 x=-8
Тигезләмә хәзер чишелгән.
x^{2}+x-56=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
x^{2}+x-56-\left(-56\right)=-\left(-56\right)
Тигезләмәнең ике ягына 56 өстәгез.
x^{2}+x=-\left(-56\right)
-56'ны үзеннән алу 0 калдыра.
x^{2}+x=56
-56'ны 0'нан алыгыз.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=56+\left(\frac{1}{2}\right)^{2}
\frac{1}{2}-не алу өчен, 1 — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{1}{2}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+x+\frac{1}{4}=56+\frac{1}{4}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{1}{2} квадратын табыгыз.
x^{2}+x+\frac{1}{4}=\frac{225}{4}
56'ны \frac{1}{4}'га өстәгез.
\left(x+\frac{1}{2}\right)^{2}=\frac{225}{4}
x^{2}+x+\frac{1}{4} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{1}{2}=\frac{15}{2} x+\frac{1}{2}=-\frac{15}{2}
Гадиләштерегез.
x=7 x=-8
Тигезләмәнең ике ягыннан \frac{1}{2} алыгыз.