x өчен чишелеш
x=-7
x=2
Граф
Уртаклык
Клип тактага күчереп
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
\frac{81}{4}'ны ике яктан алыгыз.
x^{2}+5x-14=0
-14 алу өчен, \frac{25}{4} \frac{81}{4}'нан алыгыз.
a+b=5 ab=-14
Тигезләмәне чишү өчен, x^{2}+5x-14'ны x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын кулланып тапкырлагыз. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,14 -2,7
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -14 продуктын бирүче андый һәр парларны күрсәтегез.
-1+14=13 -2+7=5
Һәр пар өчен сумманы исәпләү.
a=-2 b=7
Чишелеш - 5 бирүче пар.
\left(x-2\right)\left(x+7\right)
Алынган кыйммәтләрне кулланып, \left(x+a\right)\left(x+b\right) тапкырланган аңлатманы яңадан языгыз.
x=2 x=-7
Тигезләмә чишелешләрен табу өчен, x-2=0 һәм x+7=0 чишегез.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
\frac{81}{4}'ны ике яктан алыгыз.
x^{2}+5x-14=0
-14 алу өчен, \frac{25}{4} \frac{81}{4}'нан алыгыз.
a+b=5 ab=1\left(-14\right)=-14
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx-14 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,14 -2,7
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -14 продуктын бирүче андый һәр парларны күрсәтегез.
-1+14=13 -2+7=5
Һәр пар өчен сумманы исәпләү.
a=-2 b=7
Чишелеш - 5 бирүче пар.
\left(x^{2}-2x\right)+\left(7x-14\right)
x^{2}+5x-14-ны \left(x^{2}-2x\right)+\left(7x-14\right) буларак яңадан языгыз.
x\left(x-2\right)+7\left(x-2\right)
x беренче һәм 7 икенче төркемдә тапкырлау.
\left(x-2\right)\left(x+7\right)
Булу үзлеген кулланып, x-2 гомуми шартны чыгартыгыз.
x=2 x=-7
Тигезләмә чишелешләрен табу өчен, x-2=0 һәм x+7=0 чишегез.
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=\frac{81}{4}-\frac{81}{4}
Тигезләмәнең ике ягыннан \frac{81}{4} алыгыз.
x^{2}+5x+\frac{25}{4}-\frac{81}{4}=0
\frac{81}{4}'ны үзеннән алу 0 калдыра.
x^{2}+5x-14=0
Гомуми ваклаучыны табып һәм санаучыларны алып, \frac{81}{4}'на \frac{25}{4}'нан алыгыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, 5'ны b'га һәм -14'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
5 квадратын табыгыз.
x=\frac{-5±\sqrt{25+56}}{2}
-4'ны -14 тапкыр тапкырлагыз.
x=\frac{-5±\sqrt{81}}{2}
25'ны 56'га өстәгез.
x=\frac{-5±9}{2}
81'нан квадрат тамырын чыгартыгыз.
x=\frac{4}{2}
Хәзер ± плюс булганда, x=\frac{-5±9}{2} тигезләмәсен чишегез. -5'ны 9'га өстәгез.
x=2
4'ны 2'га бүлегез.
x=-\frac{14}{2}
Хәзер ± минус булганда, x=\frac{-5±9}{2} тигезләмәсен чишегез. 9'ны -5'нан алыгыз.
x=-7
-14'ны 2'га бүлегез.
x=2 x=-7
Тигезләмә хәзер чишелгән.
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
x^{2}+5x+\frac{25}{4} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
Гадиләштерегез.
x=2 x=-7
Тигезләмәнең ике ягыннан \frac{5}{2} алыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}