x өчен чишелеш
x=7
Граф
Уртаклык
Клип тактага күчереп
x^{2}+49-14x=0
14x'ны ике яктан алыгыз.
x^{2}-14x+49=0
Полиномны стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Шартларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
a+b=-14 ab=49
Тигезләмәне чишү өчен, x^{2}-14x+49'ны x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын кулланып тапкырлагыз. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-49 -7,-7
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 49 продуктын бирүче андый һәр парларны күрсәтегез.
-1-49=-50 -7-7=-14
Һәр пар өчен сумманы исәпләү.
a=-7 b=-7
Чишелеш - -14 бирүче пар.
\left(x-7\right)\left(x-7\right)
Алынган кыйммәтләрне кулланып, \left(x+a\right)\left(x+b\right) тапкырланган аңлатманы яңадан языгыз.
\left(x-7\right)^{2}
Биномиаль квадрат буларак яңадан языгыз.
x=7
Тигезләмә чишелешен табу өчен, x-7=0 чишегез.
x^{2}+49-14x=0
14x'ны ике яктан алыгыз.
x^{2}-14x+49=0
Полиномны стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Шартларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
a+b=-14 ab=1\times 49=49
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx+49 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-49 -7,-7
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 49 продуктын бирүче андый һәр парларны күрсәтегез.
-1-49=-50 -7-7=-14
Һәр пар өчен сумманы исәпләү.
a=-7 b=-7
Чишелеш - -14 бирүче пар.
\left(x^{2}-7x\right)+\left(-7x+49\right)
x^{2}-14x+49-ны \left(x^{2}-7x\right)+\left(-7x+49\right) буларак яңадан языгыз.
x\left(x-7\right)-7\left(x-7\right)
x беренче һәм -7 икенче төркемдә тапкырлау.
\left(x-7\right)\left(x-7\right)
Булу үзлеген кулланып, x-7 гомуми шартны чыгартыгыз.
\left(x-7\right)^{2}
Биномиаль квадрат буларак яңадан языгыз.
x=7
Тигезләмә чишелешен табу өчен, x-7=0 чишегез.
x^{2}+49-14x=0
14x'ны ике яктан алыгыз.
x^{2}-14x+49=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, -14'ны b'га һәм 49'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2}
-14 квадратын табыгыз.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2}
-4'ны 49 тапкыр тапкырлагыз.
x=\frac{-\left(-14\right)±\sqrt{0}}{2}
196'ны -196'га өстәгез.
x=-\frac{-14}{2}
0'нан квадрат тамырын чыгартыгыз.
x=\frac{14}{2}
-14 санның капма-каршысы - 14.
x=7
14'ны 2'га бүлегез.
x^{2}+49-14x=0
14x'ны ике яктан алыгыз.
x^{2}-14x=-49
49'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
x^{2}-14x+\left(-7\right)^{2}=-49+\left(-7\right)^{2}
-7-не алу өчен, -14 — x элементының коэффициентын — 2-гә бүлегез. Аннары -7'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-14x+49=-49+49
-7 квадратын табыгыз.
x^{2}-14x+49=0
-49'ны 49'га өстәгез.
\left(x-7\right)^{2}=0
x^{2}-14x+49 тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-7\right)^{2}}=\sqrt{0}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-7=0 x-7=0
Гадиләштерегез.
x=7 x=7
Тигезләмәнең ике ягына 7 өстәгез.
x=7
Тигезләмә хәзер чишелгән. Чишелешләр бер төрле.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}