Тапкырлаучы
\left(x+6\right)^{2}
Исәпләгез
\left(x+6\right)^{2}
Граф
Викторина
Polynomial
x ^ { 2 } + 36 + 12 x
Уртаклык
Клип тактага күчереп
x^{2}+12x+36
Полиномны стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Шартларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
a+b=12 ab=1\times 36=36
Аңлатманы төркемләп тапкырлагыз. Беренчедән, аңлатманы x^{2}+ax+bx+36 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
1,36 2,18 3,12 4,9 6,6
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b уңай булгач, a һәм b икесе дә уңай. 36 продуктын бирүче андый һәр парларны күрсәтегез.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Һәр пар өчен сумманы исәпләү.
a=6 b=6
Чишелеш - 12 бирүче пар.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36-ны \left(x^{2}+6x\right)+\left(6x+36\right) буларак яңадан языгыз.
x\left(x+6\right)+6\left(x+6\right)
x беренче һәм 6 икенче төркемдә тапкырлау.
\left(x+6\right)\left(x+6\right)
Булу үзлеген кулланып, x+6 гомуми шартны чыгартыгыз.
\left(x+6\right)^{2}
Биномиаль квадрат буларак яңадан языгыз.
factor(x^{2}+12x+36)
Әлеге өчбуын квадратлы өчбуын формасында, гомуми тапкырлаучыга тапкырланган булырга ихтимал. Квадратлы өчбуыннар башлангыч һәм ахыргы элементларның квадрат тамырын табып вакланырга мөмкин.
\sqrt{36}=6
Ахыргы элементның квадрат тамырын табыгыз, 36.
\left(x+6\right)^{2}
Квадратлы өчбуын - башлангыч һәм ахыргы элементларның квадрат тамырының суммасы яки аермасы булган квадратлы икебуын, квадратлы өчбуынның уртача элементының тамгасын билгеләүче тамга белән.
x^{2}+12x+36=0
Квадрат күпбуынны ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) үзгәртүне кулланып, таратырга була, кайда x_{1} һәм x_{2} - ax^{2}+bx+c=0 квадрат тигезләмәсенең чишелеше.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
12 квадратын табыгыз.
x=\frac{-12±\sqrt{144-144}}{2}
-4'ны 36 тапкыр тапкырлагыз.
x=\frac{-12±\sqrt{0}}{2}
144'ны -144'га өстәгез.
x=\frac{-12±0}{2}
0'нан квадрат тамырын чыгартыгыз.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Башлангыч аңлатманы ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) кулланып, тарату. x_{1} өчен -6 һәм x_{2} өчен -6 алмаштыру.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
p-\left(-q\right) to p+q формадагы барлык аңлатмаларны гадиләштерү.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}