Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+y=3,x-y=4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=3
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+3
Тигезләмәнең ике ягыннан y алыгыз.
-y+3-y=4
Башка тигезләмәдә x урынына -y+3 куегыз, x-y=4.
-2y+3=4
-y'ны -y'га өстәгез.
-2y=1
Тигезләмәнең ике ягыннан 3 алыгыз.
y=-\frac{1}{2}
Ике якны -2-га бүлегез.
x=-\left(-\frac{1}{2}\right)+3
-\frac{1}{2}'ны y өчен x=-y+3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{1}{2}+3
-1'ны -\frac{1}{2} тапкыр тапкырлагыз.
x=\frac{7}{2}
3'ны \frac{1}{2}'га өстәгез.
x=\frac{7}{2},y=-\frac{1}{2}
Система хәзер чишелгән.
x+y=3,x-y=4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{1}{2}\times 4\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\\-\frac{1}{2}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{7}{2},y=-\frac{1}{2}
x һәм y матрица элементларын чыгартыгыз.
x+y=3,x-y=4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-x+y+y=3-4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, x-y=4'ны x+y=3'нан алыгыз.
y+y=3-4
x'ны -x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, x һәм -x шартлар кыскартылган.
2y=3-4
y'ны y'га өстәгез.
2y=-1
3'ны -4'га өстәгез.
y=-\frac{1}{2}
Ике якны 2-га бүлегез.
x-\left(-\frac{1}{2}\right)=4
-\frac{1}{2}'ны y өчен x-y=4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x+\frac{1}{2}=4
-1'ны -\frac{1}{2} тапкыр тапкырлагыз.
x=\frac{7}{2}
Тигезләмәнең ике ягыннан \frac{1}{2} алыгыз.
x=\frac{7}{2},y=-\frac{1}{2}
Система хәзер чишелгән.