Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=7,3x+5y=15
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=7
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y+7
Тигезләмәнең ике ягыннан 2y алыгыз.
3\left(-2y+7\right)+5y=15
Башка тигезләмәдә x урынына -2y+7 куегыз, 3x+5y=15.
-6y+21+5y=15
3'ны -2y+7 тапкыр тапкырлагыз.
-y+21=15
-6y'ны 5y'га өстәгез.
-y=-6
Тигезләмәнең ике ягыннан 21 алыгыз.
y=6
Ике якны -1-га бүлегез.
x=-2\times 6+7
6'ны y өчен x=-2y+7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-12+7
-2'ны 6 тапкыр тапкырлагыз.
x=-5
7'ны -12'га өстәгез.
x=-5,y=6
Система хәзер чишелгән.
x+2y=7,3x+5y=15
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\15\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}1&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
\left(\begin{matrix}1&2\\3&5\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&5\end{matrix}\right))\left(\begin{matrix}7\\15\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 3}&-\frac{2}{5-2\times 3}\\-\frac{3}{5-2\times 3}&\frac{1}{5-2\times 3}\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&2\\3&-1\end{matrix}\right)\left(\begin{matrix}7\\15\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 7+2\times 15\\3\times 7-15\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\6\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-5,y=6
x һәм y матрица элементларын чыгартыгыз.
x+2y=7,3x+5y=15
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+3\times 2y=3\times 7,3x+5y=15
x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
3x+6y=21,3x+5y=15
Гадиләштерегез.
3x-3x+6y-5y=21-15
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+5y=15'ны 3x+6y=21'нан алыгыз.
6y-5y=21-15
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
y=21-15
6y'ны -5y'га өстәгез.
y=6
21'ны -15'га өстәгез.
3x+5\times 6=15
6'ны y өчен 3x+5y=15'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x+30=15
5'ны 6 тапкыр тапкырлагыз.
3x=-15
Тигезләмәнең ике ягыннан 30 алыгыз.
x=-5
Ике якны 3-га бүлегез.
x=-5,y=6
Система хәзер чишелгән.