Төп эчтәлеккә скип
Тапкырлаучы
Tick mark Image
Исәпләгез
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

-x^{2}+2x+3
Полиномны стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Шартларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
a+b=2 ab=-3=-3
Аңлатманы төркемләп тапкырлагыз. Беренчедән, аңлатманы -x^{2}+ax+bx+3 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
a=3 b=-1
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. Бер андый пар - система чишелеше.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3-ны \left(-x^{2}+3x\right)+\left(-x+3\right) буларак яңадан языгыз.
-x\left(x-3\right)-\left(x-3\right)
-x беренче һәм -1 икенче төркемдә тапкырлау.
\left(x-3\right)\left(-x-1\right)
Булу үзлеген кулланып, x-3 гомуми шартны чыгартыгыз.
-x^{2}+2x+3=0
Квадрат күпбуынны ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) үзгәртүне кулланып, таратырга була, кайда x_{1} һәм x_{2} - ax^{2}+bx+c=0 квадрат тигезләмәсенең чишелеше.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
2 квадратын табыгыз.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4'ны -1 тапкыр тапкырлагыз.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
4'ны 3 тапкыр тапкырлагыз.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
4'ны 12'га өстәгез.
x=\frac{-2±4}{2\left(-1\right)}
16'нан квадрат тамырын чыгартыгыз.
x=\frac{-2±4}{-2}
2'ны -1 тапкыр тапкырлагыз.
x=\frac{2}{-2}
Хәзер ± плюс булганда, x=\frac{-2±4}{-2} тигезләмәсен чишегез. -2'ны 4'га өстәгез.
x=-1
2'ны -2'га бүлегез.
x=-\frac{6}{-2}
Хәзер ± минус булганда, x=\frac{-2±4}{-2} тигезләмәсен чишегез. 4'ны -2'нан алыгыз.
x=3
-6'ны -2'га бүлегез.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Башлангыч аңлатманы ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) кулланып, тарату. x_{1} өчен -1 һәм x_{2} өчен 3 алмаштыру.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
p-\left(-q\right) to p+q формадагы барлык аңлатмаларны гадиләштерү.