t өчен чишелеш
t=\frac{2}{3}\approx 0.666666667
Уртаклык
Клип тактага күчереп
9t^{2}-12t+4=0
Ике як өчен 4 өстәгез.
a+b=-12 ab=9\times 4=36
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 9t^{2}+at+bt+4 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 36 продуктын бирүче андый һәр парларны күрсәтегез.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Һәр пар өчен сумманы исәпләү.
a=-6 b=-6
Чишелеш - -12 бирүче пар.
\left(9t^{2}-6t\right)+\left(-6t+4\right)
9t^{2}-12t+4-ны \left(9t^{2}-6t\right)+\left(-6t+4\right) буларак яңадан языгыз.
3t\left(3t-2\right)-2\left(3t-2\right)
3t беренче һәм -2 икенче төркемдә тапкырлау.
\left(3t-2\right)\left(3t-2\right)
Булу үзлеген кулланып, 3t-2 гомуми шартны чыгартыгыз.
\left(3t-2\right)^{2}
Биномиаль квадрат буларак яңадан языгыз.
t=\frac{2}{3}
Тигезләмә чишелешен табу өчен, 3t-2=0 чишегез.
9t^{2}-12t=-4
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
9t^{2}-12t-\left(-4\right)=-4-\left(-4\right)
Тигезләмәнең ике ягына 4 өстәгез.
9t^{2}-12t-\left(-4\right)=0
-4'ны үзеннән алу 0 калдыра.
9t^{2}-12t+4=0
-4'ны 0'нан алыгыз.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 9'ны a'га, -12'ны b'га һәм 4'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
-12 квадратын табыгыз.
t=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
-4'ны 9 тапкыр тапкырлагыз.
t=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
-36'ны 4 тапкыр тапкырлагыз.
t=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
144'ны -144'га өстәгез.
t=-\frac{-12}{2\times 9}
0'нан квадрат тамырын чыгартыгыз.
t=\frac{12}{2\times 9}
-12 санның капма-каршысы - 12.
t=\frac{12}{18}
2'ны 9 тапкыр тапкырлагыз.
t=\frac{2}{3}
6 чыгартып һәм ташлап, \frac{12}{18} өлешен иң түбән буыннарга кадәр киметү.
9t^{2}-12t=-4
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
\frac{9t^{2}-12t}{9}=-\frac{4}{9}
Ике якны 9-га бүлегез.
t^{2}+\left(-\frac{12}{9}\right)t=-\frac{4}{9}
9'га бүлү 9'га тапкырлауны кире кага.
t^{2}-\frac{4}{3}t=-\frac{4}{9}
3 чыгартып һәм ташлап, \frac{-12}{9} өлешен иң түбән буыннарга кадәр киметү.
t^{2}-\frac{4}{3}t+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3}-не алу өчен, -\frac{4}{3} — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{2}{3}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
t^{2}-\frac{4}{3}t+\frac{4}{9}=\frac{-4+4}{9}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{2}{3} квадратын табыгыз.
t^{2}-\frac{4}{3}t+\frac{4}{9}=0
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{4}{9}'ны \frac{4}{9}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
\left(t-\frac{2}{3}\right)^{2}=0
t^{2}-\frac{4}{3}t+\frac{4}{9} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(t-\frac{2}{3}\right)^{2}}=\sqrt{0}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
t-\frac{2}{3}=0 t-\frac{2}{3}=0
Гадиләштерегез.
t=\frac{2}{3} t=\frac{2}{3}
Тигезләмәнең ике ягына \frac{2}{3} өстәгез.
t=\frac{2}{3}
Тигезләмә хәзер чишелгән. Чишелешләр бер төрле.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}