x өчен чишелеш
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Граф
Уртаклык
Клип тактага күчереп
a+b=-30 ab=9\times 25=225
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 9x^{2}+ax+bx+25 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 225 продуктын бирүче андый һәр парларны күрсәтегез.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Һәр пар өчен сумманы исәпләү.
a=-15 b=-15
Чишелеш - -30 бирүче пар.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
9x^{2}-30x+25-ны \left(9x^{2}-15x\right)+\left(-15x+25\right) буларак яңадан языгыз.
3x\left(3x-5\right)-5\left(3x-5\right)
3x беренче һәм -5 икенче төркемдә тапкырлау.
\left(3x-5\right)\left(3x-5\right)
Булу үзлеген кулланып, 3x-5 гомуми шартны чыгартыгыз.
\left(3x-5\right)^{2}
Биномиаль квадрат буларак яңадан языгыз.
x=\frac{5}{3}
Тигезләмә чишелешен табу өчен, 3x-5=0 чишегез.
9x^{2}-30x+25=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 9'ны a'га, -30'ны b'га һәм 25'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
-30 квадратын табыгыз.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
-4'ны 9 тапкыр тапкырлагыз.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
-36'ны 25 тапкыр тапкырлагыз.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
900'ны -900'га өстәгез.
x=-\frac{-30}{2\times 9}
0'нан квадрат тамырын чыгартыгыз.
x=\frac{30}{2\times 9}
-30 санның капма-каршысы - 30.
x=\frac{30}{18}
2'ны 9 тапкыр тапкырлагыз.
x=\frac{5}{3}
6 чыгартып һәм ташлап, \frac{30}{18} өлешен иң түбән буыннарга кадәр киметү.
9x^{2}-30x+25=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
9x^{2}-30x+25-25=-25
Тигезләмәнең ике ягыннан 25 алыгыз.
9x^{2}-30x=-25
25'ны үзеннән алу 0 калдыра.
\frac{9x^{2}-30x}{9}=-\frac{25}{9}
Ике якны 9-га бүлегез.
x^{2}+\left(-\frac{30}{9}\right)x=-\frac{25}{9}
9'га бүлү 9'га тапкырлауны кире кага.
x^{2}-\frac{10}{3}x=-\frac{25}{9}
3 чыгартып һәм ташлап, \frac{-30}{9} өлешен иң түбән буыннарга кадәр киметү.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(-\frac{5}{3}\right)^{2}
-\frac{5}{3}-не алу өчен, -\frac{10}{3} — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{5}{3}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{-25+25}{9}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{5}{3} квадратын табыгыз.
x^{2}-\frac{10}{3}x+\frac{25}{9}=0
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{25}{9}'ны \frac{25}{9}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
\left(x-\frac{5}{3}\right)^{2}=0
x^{2}-\frac{10}{3}x+\frac{25}{9} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{0}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-\frac{5}{3}=0 x-\frac{5}{3}=0
Гадиләштерегез.
x=\frac{5}{3} x=\frac{5}{3}
Тигезләмәнең ике ягына \frac{5}{3} өстәгез.
x=\frac{5}{3}
Тигезләмә хәзер чишелгән. Чишелешләр бер төрле.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}