Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

5x-2y=1,3x+5y=13
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
5x-2y=1
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
5x=2y+1
Тигезләмәнең ике ягына 2y өстәгез.
x=\frac{1}{5}\left(2y+1\right)
Ике якны 5-га бүлегез.
x=\frac{2}{5}y+\frac{1}{5}
\frac{1}{5}'ны 2y+1 тапкыр тапкырлагыз.
3\left(\frac{2}{5}y+\frac{1}{5}\right)+5y=13
Башка тигезләмәдә x урынына \frac{2y+1}{5} куегыз, 3x+5y=13.
\frac{6}{5}y+\frac{3}{5}+5y=13
3'ны \frac{2y+1}{5} тапкыр тапкырлагыз.
\frac{31}{5}y+\frac{3}{5}=13
\frac{6y}{5}'ны 5y'га өстәгез.
\frac{31}{5}y=\frac{62}{5}
Тигезләмәнең ике ягыннан \frac{3}{5} алыгыз.
y=2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{31}{5} тигезләмәнең ике ягын да бүлегез.
x=\frac{2}{5}\times 2+\frac{1}{5}
2'ны y өчен x=\frac{2}{5}y+\frac{1}{5}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{4+1}{5}
\frac{2}{5}'ны 2 тапкыр тапкырлагыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{1}{5}'ны \frac{4}{5}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=2
Система хәзер чишелгән.
5x-2y=1,3x+5y=13
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}5&-2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\13\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}5&-2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
\left(\begin{matrix}5&-2\\3&5\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-2\times 3\right)}&-\frac{-2}{5\times 5-\left(-2\times 3\right)}\\-\frac{3}{5\times 5-\left(-2\times 3\right)}&\frac{5}{5\times 5-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{2}{31}\\-\frac{3}{31}&\frac{5}{31}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}+\frac{2}{31}\times 13\\-\frac{3}{31}+\frac{5}{31}\times 13\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=2
x һәм y матрица элементларын чыгартыгыз.
5x-2y=1,3x+5y=13
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 5x+3\left(-2\right)y=3,5\times 3x+5\times 5y=5\times 13
5x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 5'га тапкырлагыз.
15x-6y=3,15x+25y=65
Гадиләштерегез.
15x-15x-6y-25y=3-65
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 15x+25y=65'ны 15x-6y=3'нан алыгыз.
-6y-25y=3-65
15x'ны -15x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 15x һәм -15x шартлар кыскартылган.
-31y=3-65
-6y'ны -25y'га өстәгез.
-31y=-62
3'ны -65'га өстәгез.
y=2
Ике якны -31-га бүлегез.
3x+5\times 2=13
2'ны y өчен 3x+5y=13'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x+10=13
5'ны 2 тапкыр тапкырлагыз.
3x=3
Тигезләмәнең ике ягыннан 10 алыгыз.
x=1
Ике якны 3-га бүлегез.
x=1,y=2
Система хәзер чишелгән.