x өчен чишелеш
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=1
Граф
Уртаклык
Клип тактага күчереп
a+b=4 ab=3\left(-7\right)=-21
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 3x^{2}+ax+bx-7 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,21 -3,7
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -21 продуктын бирүче андый һәр парларны күрсәтегез.
-1+21=20 -3+7=4
Һәр пар өчен сумманы исәпләү.
a=-3 b=7
Чишелеш - 4 бирүче пар.
\left(3x^{2}-3x\right)+\left(7x-7\right)
3x^{2}+4x-7-ны \left(3x^{2}-3x\right)+\left(7x-7\right) буларак яңадан языгыз.
3x\left(x-1\right)+7\left(x-1\right)
3x беренче һәм 7 икенче төркемдә тапкырлау.
\left(x-1\right)\left(3x+7\right)
Булу үзлеген кулланып, x-1 гомуми шартны чыгартыгыз.
x=1 x=-\frac{7}{3}
Тигезләмә чишелешләрен табу өчен, x-1=0 һәм 3x+7=0 чишегез.
3x^{2}+4x-7=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-7\right)}}{2\times 3}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 3'ны a'га, 4'ны b'га һәм -7'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\left(-7\right)}}{2\times 3}
4 квадратын табыгыз.
x=\frac{-4±\sqrt{16-12\left(-7\right)}}{2\times 3}
-4'ны 3 тапкыр тапкырлагыз.
x=\frac{-4±\sqrt{16+84}}{2\times 3}
-12'ны -7 тапкыр тапкырлагыз.
x=\frac{-4±\sqrt{100}}{2\times 3}
16'ны 84'га өстәгез.
x=\frac{-4±10}{2\times 3}
100'нан квадрат тамырын чыгартыгыз.
x=\frac{-4±10}{6}
2'ны 3 тапкыр тапкырлагыз.
x=\frac{6}{6}
Хәзер ± плюс булганда, x=\frac{-4±10}{6} тигезләмәсен чишегез. -4'ны 10'га өстәгез.
x=1
6'ны 6'га бүлегез.
x=-\frac{14}{6}
Хәзер ± минус булганда, x=\frac{-4±10}{6} тигезләмәсен чишегез. 10'ны -4'нан алыгыз.
x=-\frac{7}{3}
2 чыгартып һәм ташлап, \frac{-14}{6} өлешен иң түбән буыннарга кадәр киметү.
x=1 x=-\frac{7}{3}
Тигезләмә хәзер чишелгән.
3x^{2}+4x-7=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
3x^{2}+4x-7-\left(-7\right)=-\left(-7\right)
Тигезләмәнең ике ягына 7 өстәгез.
3x^{2}+4x=-\left(-7\right)
-7'ны үзеннән алу 0 калдыра.
3x^{2}+4x=7
-7'ны 0'нан алыгыз.
\frac{3x^{2}+4x}{3}=\frac{7}{3}
Ике якны 3-га бүлегез.
x^{2}+\frac{4}{3}x=\frac{7}{3}
3'га бүлү 3'га тапкырлауны кире кага.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{7}{3}+\left(\frac{2}{3}\right)^{2}
\frac{2}{3}-не алу өчен, \frac{4}{3} — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{2}{3}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{7}{3}+\frac{4}{9}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{2}{3} квадратын табыгыз.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{25}{9}
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{7}{3}'ны \frac{4}{9}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
\left(x+\frac{2}{3}\right)^{2}=\frac{25}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{2}{3}=\frac{5}{3} x+\frac{2}{3}=-\frac{5}{3}
Гадиләштерегез.
x=1 x=-\frac{7}{3}
Тигезләмәнең ике ягыннан \frac{2}{3} алыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}