Төп эчтәлеккә скип
Исәпләгез
Tick mark Image
Тапкырлаучы
Tick mark Image

Уртаклык

3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
\frac{7+2\sqrt{10}}{3}-ны дәрәҗәле итү өчен, санаучыны да, ваклаучыны да дәрәҗәлегә кадәр күтәрегез, аннары бүлегез.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} бер вакланма буларак чагылдыру.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
3'дан санаучыда да, ваклаучыда да кыскарту.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
4\times \frac{7+2\sqrt{10}}{3} бер вакланма буларак чагылдыру.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, \frac{7-2\sqrt{10}}{3}'ны \frac{4\left(7+2\sqrt{10}\right)}{3} тапкыр тапкырлагыз.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 3 һәм 3\times 3-нең иң ким гомуми кабатлы саны — 3\times 3. \frac{\left(2\sqrt{10}+7\right)^{2}}{3}'ны \frac{3}{3} тапкыр тапкырлагыз.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} һәм \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} бер ук ваклаучы булгач, аларны, санаучыларын өстәп, өстәгез.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
\frac{7-2\sqrt{10}}{3}-ны дәрәҗәле итү өчен, санаучыны да, ваклаучыны да дәрәҗәлегә кадәр күтәрегез, аннары бүлегез.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} бер вакланма буларак чагылдыру.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
3'дан санаучыда да, ваклаучыда да кыскарту.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
\left(-2\sqrt{10}+7\right)^{2}не җәю өчен, \left(a+b\right)^{2}=a^{2}+2ab+b^{2} бинома теоремасын кулланыгыз.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
\sqrt{10} квадрат тамыры — 10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
40 алу өчен, 4 һәм 10 тапкырлагыз.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
89 алу өчен, 40 һәм 49 өстәгез.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 3\times 3 һәм 3-нең иң ким гомуми кабатлы саны — 3\times 3. \frac{89-28\sqrt{10}}{3}'ны \frac{3}{3} тапкыр тапкырлагыз.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} һәм \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
\left(2\sqrt{10}+7\right)^{2}не җәю өчен, \left(a+b\right)^{2}=a^{2}+2ab+b^{2} бинома теоремасын кулланыгыз.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
\sqrt{10} квадрат тамыры — 10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
40 алу өчен, 4 һәм 10 тапкырлагыз.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
89 алу өчен, 40 һәм 49 өстәгез.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
9 алу өчен, 3 һәм 3 тапкырлагыз.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
Аңлатмаларны өстәү яки алу өчен, аларның ваклаучыларын бертөрле итү өчен җәегез. 9 һәм 3-нең иң ким гомуми кабатлы саны — 9. \frac{89-28\sqrt{10}}{3}'ны \frac{3}{3} тапкыр тапкырлагыз.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} һәм \frac{3\left(89-28\sqrt{10}\right)}{9} бер ук ваклаучы булгач, аларны, санаучыларын алып, алыгыз.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)-да тапкырлаулар башкарыгыз.
\frac{36+168\sqrt{10}}{9}
267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}-да исәпләүләрне башкарыгыз.