Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x^{2}-6=x^{2}-x-6
x+2-ны x-3'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
3x^{2}-6-x^{2}=-x-6
x^{2}'ны ике яктан алыгыз.
2x^{2}-6=-x-6
2x^{2} алу өчен, 3x^{2} һәм -x^{2} берләштерегз.
2x^{2}-6+x=-6
Ике як өчен x өстәгез.
2x^{2}-6+x+6=0
Ике як өчен 6 өстәгез.
2x^{2}+x=0
0 алу өчен, -6 һәм 6 өстәгез.
x\left(2x+1\right)=0
x'ны чыгартыгыз.
x=0 x=-\frac{1}{2}
Тигезләмә чишелешләрен табу өчен, x=0 һәм 2x+1=0 чишегез.
3x^{2}-6=x^{2}-x-6
x+2-ны x-3'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
3x^{2}-6-x^{2}=-x-6
x^{2}'ны ике яктан алыгыз.
2x^{2}-6=-x-6
2x^{2} алу өчен, 3x^{2} һәм -x^{2} берләштерегз.
2x^{2}-6+x=-6
Ике як өчен x өстәгез.
2x^{2}-6+x+6=0
Ике як өчен 6 өстәгез.
2x^{2}+x=0
0 алу өчен, -6 һәм 6 өстәгез.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 2'ны a'га, 1'ны b'га һәм 0'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times 2}
1^{2}'нан квадрат тамырын чыгартыгыз.
x=\frac{-1±1}{4}
2'ны 2 тапкыр тапкырлагыз.
x=\frac{0}{4}
Хәзер ± плюс булганда, x=\frac{-1±1}{4} тигезләмәсен чишегез. -1'ны 1'га өстәгез.
x=0
0'ны 4'га бүлегез.
x=-\frac{2}{4}
Хәзер ± минус булганда, x=\frac{-1±1}{4} тигезләмәсен чишегез. 1'ны -1'нан алыгыз.
x=-\frac{1}{2}
2 чыгартып һәм ташлап, \frac{-2}{4} өлешен иң түбән буыннарга кадәр киметү.
x=0 x=-\frac{1}{2}
Тигезләмә хәзер чишелгән.
3x^{2}-6=x^{2}-x-6
x+2-ны x-3'га тапкырлау өчен, бүлү үзлеген кулланыгыз һәм охшаш элементларны берләштерегез.
3x^{2}-6-x^{2}=-x-6
x^{2}'ны ике яктан алыгыз.
2x^{2}-6=-x-6
2x^{2} алу өчен, 3x^{2} һәм -x^{2} берләштерегз.
2x^{2}-6+x=-6
Ике як өчен x өстәгез.
2x^{2}+x=-6+6
Ике як өчен 6 өстәгез.
2x^{2}+x=0
0 алу өчен, -6 һәм 6 өстәгез.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Ике якны 2-га бүлегез.
x^{2}+\frac{1}{2}x=\frac{0}{2}
2'га бүлү 2'га тапкырлауны кире кага.
x^{2}+\frac{1}{2}x=0
0'ны 2'га бүлегез.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
\frac{1}{4}-не алу өчен, \frac{1}{2} — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{1}{4}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{1}{4} квадратын табыгыз.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Гадиләштерегез.
x=0 x=-\frac{1}{2}
Тигезләмәнең ике ягыннан \frac{1}{4} алыгыз.