Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x-3y=17,4x+y=13
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x-3y=17
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=3y+17
Тигезләмәнең ике ягына 3y өстәгез.
x=\frac{1}{2}\left(3y+17\right)
Ике якны 2-га бүлегез.
x=\frac{3}{2}y+\frac{17}{2}
\frac{1}{2}'ны 3y+17 тапкыр тапкырлагыз.
4\left(\frac{3}{2}y+\frac{17}{2}\right)+y=13
Башка тигезләмәдә x урынына \frac{3y+17}{2} куегыз, 4x+y=13.
6y+34+y=13
4'ны \frac{3y+17}{2} тапкыр тапкырлагыз.
7y+34=13
6y'ны y'га өстәгез.
7y=-21
Тигезләмәнең ике ягыннан 34 алыгыз.
y=-3
Ике якны 7-га бүлегез.
x=\frac{3}{2}\left(-3\right)+\frac{17}{2}
-3'ны y өчен x=\frac{3}{2}y+\frac{17}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-9+17}{2}
\frac{3}{2}'ны -3 тапкыр тапкырлагыз.
x=4
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{17}{2}'ны -\frac{9}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=4,y=-3
Система хәзер чишелгән.
2x-3y=17,4x+y=13
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\13\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}17\\13\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}17\\13\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}17\\13\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\times 4\right)}&-\frac{-3}{2-\left(-3\times 4\right)}\\-\frac{4}{2-\left(-3\times 4\right)}&\frac{2}{2-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}17\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}17\\13\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 17+\frac{3}{14}\times 13\\-\frac{2}{7}\times 17+\frac{1}{7}\times 13\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=4,y=-3
x һәм y матрица элементларын чыгартыгыз.
2x-3y=17,4x+y=13
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\times 2x+4\left(-3\right)y=4\times 17,2\times 4x+2y=2\times 13
2x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
8x-12y=68,8x+2y=26
Гадиләштерегез.
8x-8x-12y-2y=68-26
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 8x+2y=26'ны 8x-12y=68'нан алыгыз.
-12y-2y=68-26
8x'ны -8x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 8x һәм -8x шартлар кыскартылган.
-14y=68-26
-12y'ны -2y'га өстәгез.
-14y=42
68'ны -26'га өстәгез.
y=-3
Ике якны -14-га бүлегез.
4x-3=13
-3'ны y өчен 4x+y=13'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x=16
Тигезләмәнең ике ягына 3 өстәгез.
x=4
Ике якны 4-га бүлегез.
x=4,y=-3
Система хәзер чишелгән.