Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x^{2}-5x-12=0
12'ны ике яктан алыгыз.
a+b=-5 ab=2\left(-12\right)=-24
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 2x^{2}+ax+bx-12 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
1,-24 2,-12 3,-8 4,-6
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b тискәре булгач, тискәре санның абсолют кыйммәте уңай санныкыннан зуррак. -24 продуктын бирүче андый һәр парларны күрсәтегез.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Һәр пар өчен сумманы исәпләү.
a=-8 b=3
Чишелеш - -5 бирүче пар.
\left(2x^{2}-8x\right)+\left(3x-12\right)
2x^{2}-5x-12-ны \left(2x^{2}-8x\right)+\left(3x-12\right) буларак яңадан языгыз.
2x\left(x-4\right)+3\left(x-4\right)
2x беренче һәм 3 икенче төркемдә тапкырлау.
\left(x-4\right)\left(2x+3\right)
Булу үзлеген кулланып, x-4 гомуми шартны чыгартыгыз.
x=4 x=-\frac{3}{2}
Тигезләмә чишелешләрен табу өчен, x-4=0 һәм 2x+3=0 чишегез.
2x^{2}-5x=12
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
2x^{2}-5x-12=12-12
Тигезләмәнең ике ягыннан 12 алыгыз.
2x^{2}-5x-12=0
12'ны үзеннән алу 0 калдыра.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 2'ны a'га, -5'ны b'га һәм -12'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
-5 квадратын табыгыз.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-12\right)}}{2\times 2}
-4'ны 2 тапкыр тапкырлагыз.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 2}
-8'ны -12 тапкыр тапкырлагыз.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 2}
25'ны 96'га өстәгез.
x=\frac{-\left(-5\right)±11}{2\times 2}
121'нан квадрат тамырын чыгартыгыз.
x=\frac{5±11}{2\times 2}
-5 санның капма-каршысы - 5.
x=\frac{5±11}{4}
2'ны 2 тапкыр тапкырлагыз.
x=\frac{16}{4}
Хәзер ± плюс булганда, x=\frac{5±11}{4} тигезләмәсен чишегез. 5'ны 11'га өстәгез.
x=4
16'ны 4'га бүлегез.
x=-\frac{6}{4}
Хәзер ± минус булганда, x=\frac{5±11}{4} тигезләмәсен чишегез. 11'ны 5'нан алыгыз.
x=-\frac{3}{2}
2 чыгартып һәм ташлап, \frac{-6}{4} өлешен иң түбән буыннарга кадәр киметү.
x=4 x=-\frac{3}{2}
Тигезләмә хәзер чишелгән.
2x^{2}-5x=12
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
\frac{2x^{2}-5x}{2}=\frac{12}{2}
Ике якны 2-га бүлегез.
x^{2}-\frac{5}{2}x=\frac{12}{2}
2'га бүлү 2'га тапкырлауны кире кага.
x^{2}-\frac{5}{2}x=6
12'ны 2'га бүлегез.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=6+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4}-не алу өчен, -\frac{5}{2} — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{5}{4}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-\frac{5}{2}x+\frac{25}{16}=6+\frac{25}{16}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{5}{4} квадратын табыгыз.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{121}{16}
6'ны \frac{25}{16}'га өстәгез.
\left(x-\frac{5}{4}\right)^{2}=\frac{121}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-\frac{5}{4}=\frac{11}{4} x-\frac{5}{4}=-\frac{11}{4}
Гадиләштерегез.
x=4 x=-\frac{3}{2}
Тигезләмәнең ике ягына \frac{5}{4} өстәгез.