Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x^{2}+3x-8=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-8\right)}}{2\times 2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 2'ны a'га, 3'ны b'га һәм -8'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-8\right)}}{2\times 2}
3 квадратын табыгыз.
x=\frac{-3±\sqrt{9-8\left(-8\right)}}{2\times 2}
-4'ны 2 тапкыр тапкырлагыз.
x=\frac{-3±\sqrt{9+64}}{2\times 2}
-8'ны -8 тапкыр тапкырлагыз.
x=\frac{-3±\sqrt{73}}{2\times 2}
9'ны 64'га өстәгез.
x=\frac{-3±\sqrt{73}}{4}
2'ны 2 тапкыр тапкырлагыз.
x=\frac{\sqrt{73}-3}{4}
Хәзер ± плюс булганда, x=\frac{-3±\sqrt{73}}{4} тигезләмәсен чишегез. -3'ны \sqrt{73}'га өстәгез.
x=\frac{-\sqrt{73}-3}{4}
Хәзер ± минус булганда, x=\frac{-3±\sqrt{73}}{4} тигезләмәсен чишегез. \sqrt{73}'ны -3'нан алыгыз.
x=\frac{\sqrt{73}-3}{4} x=\frac{-\sqrt{73}-3}{4}
Тигезләмә хәзер чишелгән.
2x^{2}+3x-8=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
2x^{2}+3x-8-\left(-8\right)=-\left(-8\right)
Тигезләмәнең ике ягына 8 өстәгез.
2x^{2}+3x=-\left(-8\right)
-8'ны үзеннән алу 0 калдыра.
2x^{2}+3x=8
-8'ны 0'нан алыгыз.
\frac{2x^{2}+3x}{2}=\frac{8}{2}
Ике якны 2-га бүлегез.
x^{2}+\frac{3}{2}x=\frac{8}{2}
2'га бүлү 2'га тапкырлауны кире кага.
x^{2}+\frac{3}{2}x=4
8'ны 2'га бүлегез.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=4+\left(\frac{3}{4}\right)^{2}
\frac{3}{4}-не алу өчен, \frac{3}{2} — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{3}{4}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+\frac{3}{2}x+\frac{9}{16}=4+\frac{9}{16}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{3}{4} квадратын табыгыз.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{73}{16}
4'ны \frac{9}{16}'га өстәгез.
\left(x+\frac{3}{4}\right)^{2}=\frac{73}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{3}{4}=\frac{\sqrt{73}}{4} x+\frac{3}{4}=-\frac{\sqrt{73}}{4}
Гадиләштерегез.
x=\frac{\sqrt{73}-3}{4} x=\frac{-\sqrt{73}-3}{4}
Тигезләмәнең ике ягыннан \frac{3}{4} алыгыз.