Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x^{2}+3x-12+7=0
Ике як өчен 7 өстәгез.
2x^{2}+3x-5=0
-5 алу өчен, -12 һәм 7 өстәгез.
a+b=3 ab=2\left(-5\right)=-10
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне 2x^{2}+ax+bx-5 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,10 -2,5
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -10 продуктын бирүче андый һәр парларны күрсәтегез.
-1+10=9 -2+5=3
Һәр пар өчен сумманы исәпләү.
a=-2 b=5
Чишелеш - 3 бирүче пар.
\left(2x^{2}-2x\right)+\left(5x-5\right)
2x^{2}+3x-5-ны \left(2x^{2}-2x\right)+\left(5x-5\right) буларак яңадан языгыз.
2x\left(x-1\right)+5\left(x-1\right)
2x беренче һәм 5 икенче төркемдә тапкырлау.
\left(x-1\right)\left(2x+5\right)
Булу үзлеген кулланып, x-1 гомуми шартны чыгартыгыз.
x=1 x=-\frac{5}{2}
Тигезләмә чишелешләрен табу өчен, x-1=0 һәм 2x+5=0 чишегез.
2x^{2}+3x-12=-7
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
2x^{2}+3x-12-\left(-7\right)=-7-\left(-7\right)
Тигезләмәнең ике ягына 7 өстәгез.
2x^{2}+3x-12-\left(-7\right)=0
-7'ны үзеннән алу 0 калдыра.
2x^{2}+3x-5=0
-7'ны -12'нан алыгыз.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 2'ны a'га, 3'ны b'га һәм -5'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 квадратын табыгыз.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4'ны 2 тапкыр тапкырлагыз.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8'ны -5 тапкыр тапкырлагыз.
x=\frac{-3±\sqrt{49}}{2\times 2}
9'ны 40'га өстәгез.
x=\frac{-3±7}{2\times 2}
49'нан квадрат тамырын чыгартыгыз.
x=\frac{-3±7}{4}
2'ны 2 тапкыр тапкырлагыз.
x=\frac{4}{4}
Хәзер ± плюс булганда, x=\frac{-3±7}{4} тигезләмәсен чишегез. -3'ны 7'га өстәгез.
x=1
4'ны 4'га бүлегез.
x=-\frac{10}{4}
Хәзер ± минус булганда, x=\frac{-3±7}{4} тигезләмәсен чишегез. 7'ны -3'нан алыгыз.
x=-\frac{5}{2}
2 чыгартып һәм ташлап, \frac{-10}{4} өлешен иң түбән буыннарга кадәр киметү.
x=1 x=-\frac{5}{2}
Тигезләмә хәзер чишелгән.
2x^{2}+3x-12=-7
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
2x^{2}+3x-12-\left(-12\right)=-7-\left(-12\right)
Тигезләмәнең ике ягына 12 өстәгез.
2x^{2}+3x=-7-\left(-12\right)
-12'ны үзеннән алу 0 калдыра.
2x^{2}+3x=5
-12'ны -7'нан алыгыз.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Ике якны 2-га бүлегез.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2'га бүлү 2'га тапкырлауны кире кага.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{4}-не алу өчен, \frac{3}{2} — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{3}{4}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{3}{4} квадратын табыгыз.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{5}{2}'ны \frac{9}{16}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Гадиләштерегез.
x=1 x=-\frac{5}{2}
Тигезләмәнең ике ягыннан \frac{3}{4} алыгыз.