Төп эчтәлеккә скип
x өчен чишелеш (complex solution)
Tick mark Image
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2xx^{2}+x^{2}+1=0
Үзгәртүчән x 0-гә тигез булырга мөмкин түгел, чөнки нольгә бүлү билгеләнмәгән. Тигезләмәнең ике ягын x^{2} тапкырлагыз.
2x^{3}+x^{2}+1=0
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 1 һәм 2 өстәгез.
±\frac{1}{2},±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 1 бүлә һәм q өйдәүче коэффициентны 2 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
2x^{2}-x+1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. 2x^{2}-x+1 алу өчен, 2x^{3}+x^{2}+1 x+1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 2-ны a өчен, -1-не b өчен, һәм 1-не c өчен алыштырабыз.
x=\frac{1±\sqrt{-7}}{4}
Исәпләүләрне башкарыгыз.
x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
± — плюс, ә ± — минус булганда, 2x^{2}-x+1=0 тигезләмәсен чишегез.
x=-1 x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
Барлык табылган чишелешләрне күрсәтегез.
2xx^{2}+x^{2}+1=0
Үзгәртүчән x 0-гә тигез булырга мөмкин түгел, чөнки нольгә бүлү билгеләнмәгән. Тигезләмәнең ике ягын x^{2} тапкырлагыз.
2x^{3}+x^{2}+1=0
Шул ук базаның куәтләрен тапкырлау өчен, аларның экспоненталарын өстәгез. 3 алу өчен, 1 һәм 2 өстәгез.
±\frac{1}{2},±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 1 бүлә һәм q өйдәүче коэффициентны 2 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
2x^{2}-x+1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. 2x^{2}-x+1 алу өчен, 2x^{3}+x^{2}+1 x+1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 2-ны a өчен, -1-не b өчен, һәм 1-не c өчен алыштырабыз.
x=\frac{1±\sqrt{-7}}{4}
Исәпләүләрне башкарыгыз.
x\in \emptyset
Реаль кырда тискәре санның квадрат тамыры билгеләнмәгән, чишелеше юк.
x=-1
Барлык табылган чишелешләрне күрсәтегез.