x өчен чишелеш
x=-3
x=-2
Граф
Уртаклык
Клип тактага күчереп
x^{2}+5x+6=0
Ике якны 2-га бүлегез.
a+b=5 ab=1\times 6=6
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx+6 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
1,6 2,3
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b уңай булгач, a һәм b икесе дә уңай. 6 продуктын бирүче андый һәр парларны күрсәтегез.
1+6=7 2+3=5
Һәр пар өчен сумманы исәпләү.
a=2 b=3
Чишелеш - 5 бирүче пар.
\left(x^{2}+2x\right)+\left(3x+6\right)
x^{2}+5x+6-ны \left(x^{2}+2x\right)+\left(3x+6\right) буларак яңадан языгыз.
x\left(x+2\right)+3\left(x+2\right)
x беренче һәм 3 икенче төркемдә тапкырлау.
\left(x+2\right)\left(x+3\right)
Булу үзлеген кулланып, x+2 гомуми шартны чыгартыгыз.
x=-2 x=-3
Тигезләмә чишелешләрен табу өчен, x+2=0 һәм x+3=0 чишегез.
2x^{2}+10x+12=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 12}}{2\times 2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 2'ны a'га, 10'ны b'га һәм 12'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\times 12}}{2\times 2}
10 квадратын табыгыз.
x=\frac{-10±\sqrt{100-8\times 12}}{2\times 2}
-4'ны 2 тапкыр тапкырлагыз.
x=\frac{-10±\sqrt{100-96}}{2\times 2}
-8'ны 12 тапкыр тапкырлагыз.
x=\frac{-10±\sqrt{4}}{2\times 2}
100'ны -96'га өстәгез.
x=\frac{-10±2}{2\times 2}
4'нан квадрат тамырын чыгартыгыз.
x=\frac{-10±2}{4}
2'ны 2 тапкыр тапкырлагыз.
x=-\frac{8}{4}
Хәзер ± плюс булганда, x=\frac{-10±2}{4} тигезләмәсен чишегез. -10'ны 2'га өстәгез.
x=-2
-8'ны 4'га бүлегез.
x=-\frac{12}{4}
Хәзер ± минус булганда, x=\frac{-10±2}{4} тигезләмәсен чишегез. 2'ны -10'нан алыгыз.
x=-3
-12'ны 4'га бүлегез.
x=-2 x=-3
Тигезләмә хәзер чишелгән.
2x^{2}+10x+12=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
2x^{2}+10x+12-12=-12
Тигезләмәнең ике ягыннан 12 алыгыз.
2x^{2}+10x=-12
12'ны үзеннән алу 0 калдыра.
\frac{2x^{2}+10x}{2}=-\frac{12}{2}
Ике якны 2-га бүлегез.
x^{2}+\frac{10}{2}x=-\frac{12}{2}
2'га бүлү 2'га тапкырлауны кире кага.
x^{2}+5x=-\frac{12}{2}
10'ны 2'га бүлегез.
x^{2}+5x=-6
-12'ны 2'га бүлегез.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
\frac{5}{2}-не алу өчен, 5 — x элементының коэффициентын — 2-гә бүлегез. Аннары \frac{5}{2}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Вакланманың санаучысын һәм ваклаучысын квадратлап, \frac{5}{2} квадратын табыгыз.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
-6'ны \frac{25}{4}'га өстәгез.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
x^{2}+5x+\frac{25}{4} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Гадиләштерегез.
x=-2 x=-3
Тигезләмәнең ике ягыннан \frac{5}{2} алыгыз.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}