Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

196=3x^{2}+16+8x+4x
3x^{2} алу өчен, 2x^{2} һәм x^{2} берләштерегз.
196=3x^{2}+16+12x
12x алу өчен, 8x һәм 4x берләштерегз.
3x^{2}+16+12x=196
Барлык алмашынучан элементлар сул ягында булсын өчен, якларны алыштырыгыз.
3x^{2}+16+12x-196=0
196'ны ике яктан алыгыз.
3x^{2}-180+12x=0
-180 алу өчен, 16 196'нан алыгыз.
x^{2}-60+4x=0
Ике якны 3-га бүлегез.
x^{2}+4x-60=0
Полиномны стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Шартларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
a+b=4 ab=1\left(-60\right)=-60
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx-60 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -60 продуктын бирүче андый һәр парларны күрсәтегез.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Һәр пар өчен сумманы исәпләү.
a=-6 b=10
Чишелеш - 4 бирүче пар.
\left(x^{2}-6x\right)+\left(10x-60\right)
x^{2}+4x-60-ны \left(x^{2}-6x\right)+\left(10x-60\right) буларак яңадан языгыз.
x\left(x-6\right)+10\left(x-6\right)
x беренче һәм 10 икенче төркемдә тапкырлау.
\left(x-6\right)\left(x+10\right)
Булу үзлеген кулланып, x-6 гомуми шартны чыгартыгыз.
x=6 x=-10
Тигезләмә чишелешләрен табу өчен, x-6=0 һәм x+10=0 чишегез.
196=3x^{2}+16+8x+4x
3x^{2} алу өчен, 2x^{2} һәм x^{2} берләштерегз.
196=3x^{2}+16+12x
12x алу өчен, 8x һәм 4x берләштерегз.
3x^{2}+16+12x=196
Барлык алмашынучан элементлар сул ягында булсын өчен, якларны алыштырыгыз.
3x^{2}+16+12x-196=0
196'ны ике яктан алыгыз.
3x^{2}-180+12x=0
-180 алу өчен, 16 196'нан алыгыз.
3x^{2}+12x-180=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-12±\sqrt{12^{2}-4\times 3\left(-180\right)}}{2\times 3}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 3'ны a'га, 12'ны b'га һәм -180'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\left(-180\right)}}{2\times 3}
12 квадратын табыгыз.
x=\frac{-12±\sqrt{144-12\left(-180\right)}}{2\times 3}
-4'ны 3 тапкыр тапкырлагыз.
x=\frac{-12±\sqrt{144+2160}}{2\times 3}
-12'ны -180 тапкыр тапкырлагыз.
x=\frac{-12±\sqrt{2304}}{2\times 3}
144'ны 2160'га өстәгез.
x=\frac{-12±48}{2\times 3}
2304'нан квадрат тамырын чыгартыгыз.
x=\frac{-12±48}{6}
2'ны 3 тапкыр тапкырлагыз.
x=\frac{36}{6}
Хәзер ± плюс булганда, x=\frac{-12±48}{6} тигезләмәсен чишегез. -12'ны 48'га өстәгез.
x=6
36'ны 6'га бүлегез.
x=-\frac{60}{6}
Хәзер ± минус булганда, x=\frac{-12±48}{6} тигезләмәсен чишегез. 48'ны -12'нан алыгыз.
x=-10
-60'ны 6'га бүлегез.
x=6 x=-10
Тигезләмә хәзер чишелгән.
196=3x^{2}+16+8x+4x
3x^{2} алу өчен, 2x^{2} һәм x^{2} берләштерегз.
196=3x^{2}+16+12x
12x алу өчен, 8x һәм 4x берләштерегз.
3x^{2}+16+12x=196
Барлык алмашынучан элементлар сул ягында булсын өчен, якларны алыштырыгыз.
3x^{2}+12x=196-16
16'ны ике яктан алыгыз.
3x^{2}+12x=180
180 алу өчен, 196 16'нан алыгыз.
\frac{3x^{2}+12x}{3}=\frac{180}{3}
Ике якны 3-га бүлегез.
x^{2}+\frac{12}{3}x=\frac{180}{3}
3'га бүлү 3'га тапкырлауны кире кага.
x^{2}+4x=\frac{180}{3}
12'ны 3'га бүлегез.
x^{2}+4x=60
180'ны 3'га бүлегез.
x^{2}+4x+2^{2}=60+2^{2}
2-не алу өчен, 4 — x элементының коэффициентын — 2-гә бүлегез. Аннары 2'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}+4x+4=60+4
2 квадратын табыгыз.
x^{2}+4x+4=64
60'ны 4'га өстәгез.
\left(x+2\right)^{2}=64
x^{2}+4x+4 тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x+2\right)^{2}}=\sqrt{64}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x+2=8 x+2=-8
Гадиләштерегез.
x=6 x=-10
Тигезләмәнең ике ягыннан 2 алыгыз.