Тапкырлаучы
\left(7-x\right)\left(2x+1\right)
Исәпләгез
\left(7-x\right)\left(2x+1\right)
Граф
Уртаклык
Клип тактага күчереп
a+b=13 ab=-2\times 7=-14
Аңлатманы төркемләп тапкырлагыз. Беренчедән, аңлатманы -2x^{2}+ax+bx+7 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,14 -2,7
ab тискәре булгач, a һәм b тамгачыгы капма-каршы. a+b уңай булгач, уңай санның абсолют кыйммәте тискәре санныкыннан зуррак. -14 продуктын бирүче андый һәр парларны күрсәтегез.
-1+14=13 -2+7=5
Һәр пар өчен сумманы исәпләү.
a=14 b=-1
Чишелеш - 13 бирүче пар.
\left(-2x^{2}+14x\right)+\left(-x+7\right)
-2x^{2}+13x+7-ны \left(-2x^{2}+14x\right)+\left(-x+7\right) буларак яңадан языгыз.
2x\left(-x+7\right)-x+7
-2x^{2}+14x-дә 2x-ны чыгартыгыз.
\left(-x+7\right)\left(2x+1\right)
Булу үзлеген кулланып, -x+7 гомуми шартны чыгартыгыз.
-2x^{2}+13x+7=0
Квадрат күпбуынны ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) үзгәртүне кулланып, таратырга була, кайда x_{1} һәм x_{2} - ax^{2}+bx+c=0 квадрат тигезләмәсенең чишелеше.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\times 7}}{2\left(-2\right)}
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-13±\sqrt{169-4\left(-2\right)\times 7}}{2\left(-2\right)}
13 квадратын табыгыз.
x=\frac{-13±\sqrt{169+8\times 7}}{2\left(-2\right)}
-4'ны -2 тапкыр тапкырлагыз.
x=\frac{-13±\sqrt{169+56}}{2\left(-2\right)}
8'ны 7 тапкыр тапкырлагыз.
x=\frac{-13±\sqrt{225}}{2\left(-2\right)}
169'ны 56'га өстәгез.
x=\frac{-13±15}{2\left(-2\right)}
225'нан квадрат тамырын чыгартыгыз.
x=\frac{-13±15}{-4}
2'ны -2 тапкыр тапкырлагыз.
x=\frac{2}{-4}
Хәзер ± плюс булганда, x=\frac{-13±15}{-4} тигезләмәсен чишегез. -13'ны 15'га өстәгез.
x=-\frac{1}{2}
2 чыгартып һәм ташлап, \frac{2}{-4} өлешен иң түбән буыннарга кадәр киметү.
x=-\frac{28}{-4}
Хәзер ± минус булганда, x=\frac{-13±15}{-4} тигезләмәсен чишегез. 15'ны -13'нан алыгыз.
x=7
-28'ны -4'га бүлегез.
-2x^{2}+13x+7=-2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-7\right)
Башлангыч аңлатманы ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) кулланып, тарату. x_{1} өчен -\frac{1}{2} һәм x_{2} өчен 7 алмаштыру.
-2x^{2}+13x+7=-2\left(x+\frac{1}{2}\right)\left(x-7\right)
p-\left(-q\right) to p+q формадагы барлык аңлатмаларны гадиләштерү.
-2x^{2}+13x+7=-2\times \frac{-2x-1}{-2}\left(x-7\right)
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{1}{2}'ны x'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
-2x^{2}+13x+7=\left(-2x-1\right)\left(x-7\right)
-2 һәм 2'да иң зур гомуми фактордан 2 баш тарту.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}