Төп эчтәлеккә скип
m өчен чишелеш
Tick mark Image
γ_μ өчен чишелеш
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

i\gamma _{μ}∂^{\mu }\psi -m\psi =0
i\gamma _{μ}∂^{\mu }-m \psi 'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
-m\psi =-i\gamma _{μ}∂^{\mu }\psi
i\gamma _{μ}∂^{\mu }\psi 'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
\left(-\psi \right)m=-i\gamma _{μ}\psi ∂^{\mu }
Тигезләмә стандарт формасында.
\frac{\left(-\psi \right)m}{-\psi }=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
Ике якны -\psi -га бүлегез.
m=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
-\psi 'га бүлү -\psi 'га тапкырлауны кире кага.
m=i\gamma _{μ}∂^{\mu }
-i\gamma _{μ}∂^{\mu }\psi 'ны -\psi 'га бүлегез.
i\gamma _{μ}∂^{\mu }\psi -m\psi =0
i\gamma _{μ}∂^{\mu }-m \psi 'га тапкырлау өчен, бүлү үзлеген кулланыгыз.
i\gamma _{μ}∂^{\mu }\psi =m\psi
Ике як өчен m\psi өстәгез. Теләсә кайсы әйбергә нуль өстәлсә, шул ук әйбер булып чыга.
i\psi ∂^{\mu }\gamma _{μ}=m\psi
Тигезләмә стандарт формасында.
\frac{i\psi ∂^{\mu }\gamma _{μ}}{i\psi ∂^{\mu }}=\frac{m\psi }{i\psi ∂^{\mu }}
Ике якны i∂^{\mu }\psi -га бүлегез.
\gamma _{μ}=\frac{m\psi }{i\psi ∂^{\mu }}
i∂^{\mu }\psi 'га бүлү i∂^{\mu }\psi 'га тапкырлауны кире кага.
\gamma _{μ}=-\frac{im}{∂^{\mu }}
m\psi 'ны i∂^{\mu }\psi 'га бүлегез.