Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
x өчен чишелеш (complex solution)
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x^{6}+1-x^{4}=x^{2}
x^{4}'ны ике яктан алыгыз.
x^{6}+1-x^{4}-x^{2}=0
x^{2}'ны ике яктан алыгыз.
x^{6}-x^{4}-x^{2}+1=0
Тигезләмәне стандарт формада урнаштыру өчен, аны яңадан оештырыгыз. Элементларны иң биектән иң түбән куәткә кадәр урнаштырыгыз.
±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 1 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{5}+x^{4}-x-1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{5}+x^{4}-x-1 алу өчен, x^{6}-x^{4}-x^{2}+1 x-1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын -1 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{4}+2x^{3}+2x^{2}+2x+1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{4}+2x^{3}+2x^{2}+2x+1 алу өчен, x^{5}+x^{4}-x-1 x-1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 1 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{3}+x^{2}+x+1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{3}+x^{2}+x+1 алу өчен, x^{4}+2x^{3}+2x^{2}+2x+1 x+1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 1 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=-1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{2}+1=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{2}+1 алу өчен, x^{3}+x^{2}+x+1 x+1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 1-ны a өчен, 0-не b өчен, һәм 1-не c өчен алыштырабыз.
x=\frac{0±\sqrt{-4}}{2}
Исәпләүләрне башкарыгыз.
x\in \emptyset
Реаль кырда тискәре санның квадрат тамыры билгеләнмәгән, чишелеше юк.
x=1 x=-1
Барлык табылган чишелешләрне күрсәтегез.