Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

a+b=-7 ab=12
Тигезләмәне чишү өчен, x^{2}-7x+12'ны x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын кулланып тапкырлагыз. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-12 -2,-6 -3,-4
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 12 продуктын бирүче андый һәр парларны күрсәтегез.
-1-12=-13 -2-6=-8 -3-4=-7
Һәр пар өчен сумманы исәпләү.
a=-4 b=-3
Чишелеш - -7 бирүче пар.
\left(x-4\right)\left(x-3\right)
Алынган кыйммәтләрне кулланып, \left(x+a\right)\left(x+b\right) тапкырланган аңлатманы яңадан языгыз.
x=4 x=3
Тигезләмә чишелешләрен табу өчен, x-4=0 һәм x-3=0 чишегез.
a+b=-7 ab=1\times 12=12
Тигезләмәне чишү өчен, сул өлешне төркемләп тапкырлагыз. Беренчедән, сул өлешне x^{2}+ax+bx+12 буларак яңадан язарга кирәк. a һәм b табу өчен, системаны чишү өчен көйләгез.
-1,-12 -2,-6 -3,-4
ab уңай булгач, a һәм b бер ук тамгачыгы. a+b тискәре булгач, a һәм b икесе дә тискәре. 12 продуктын бирүче андый һәр парларны күрсәтегез.
-1-12=-13 -2-6=-8 -3-4=-7
Һәр пар өчен сумманы исәпләү.
a=-4 b=-3
Чишелеш - -7 бирүче пар.
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12-ны \left(x^{2}-4x\right)+\left(-3x+12\right) буларак яңадан языгыз.
x\left(x-4\right)-3\left(x-4\right)
x беренче һәм -3 икенче төркемдә тапкырлау.
\left(x-4\right)\left(x-3\right)
Булу үзлеген кулланып, x-4 гомуми шартны чыгартыгыз.
x=4 x=3
Тигезләмә чишелешләрен табу өчен, x-4=0 һәм x-3=0 чишегез.
x^{2}-7x+12=0
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, -7'ны b'га һәм 12'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
-7 квадратын табыгыз.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4'ны 12 тапкыр тапкырлагыз.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
49'ны -48'га өстәгез.
x=\frac{-\left(-7\right)±1}{2}
1'нан квадрат тамырын чыгартыгыз.
x=\frac{7±1}{2}
-7 санның капма-каршысы - 7.
x=\frac{8}{2}
Хәзер ± плюс булганда, x=\frac{7±1}{2} тигезләмәсен чишегез. 7'ны 1'га өстәгез.
x=4
8'ны 2'га бүлегез.
x=\frac{6}{2}
Хәзер ± минус булганда, x=\frac{7±1}{2} тигезләмәсен чишегез. 1'ны 7'нан алыгыз.
x=3
6'ны 2'га бүлегез.
x=4 x=3
Тигезләмә хәзер чишелгән.
x^{2}-7x+12=0
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
x^{2}-7x+12-12=-12
Тигезләмәнең ике ягыннан 12 алыгыз.
x^{2}-7x=-12
12'ны үзеннән алу 0 калдыра.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2}-не алу өчен, -7 — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{7}{2}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{7}{2} квадратын табыгыз.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
-12'ны \frac{49}{4}'га өстәгез.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
x^{2}-7x+\frac{49}{4} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Гадиләштерегез.
x=4 x=3
Тигезләмәнең ике ягына \frac{7}{2} өстәгез.