x өчен чишелеш
x=10
Граф
Уртаклык
Клип тактага күчереп
\sqrt{x-9}=5-\sqrt{x+6}
Тигезләмәнең ике ягыннан \sqrt{x+6} алыгыз.
\left(\sqrt{x-9}\right)^{2}=\left(5-\sqrt{x+6}\right)^{2}
Тигезләмәнең ике ягының квадратын табыгыз.
x-9=\left(5-\sqrt{x+6}\right)^{2}
2'ның куәтен \sqrt{x-9} исәпләгез һәм x-9 алыгыз.
x-9=25-10\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}
\left(5-\sqrt{x+6}\right)^{2}не җәю өчен, \left(a-b\right)^{2}=a^{2}-2ab+b^{2} бинома теоремасын кулланыгыз.
x-9=25-10\sqrt{x+6}+x+6
2'ның куәтен \sqrt{x+6} исәпләгез һәм x+6 алыгыз.
x-9=31-10\sqrt{x+6}+x
31 алу өчен, 25 һәм 6 өстәгез.
x-9+10\sqrt{x+6}=31+x
Ике як өчен 10\sqrt{x+6} өстәгез.
x-9+10\sqrt{x+6}-x=31
x'ны ике яктан алыгыз.
-9+10\sqrt{x+6}=31
0 алу өчен, x һәм -x берләштерегз.
10\sqrt{x+6}=31+9
Ике як өчен 9 өстәгез.
10\sqrt{x+6}=40
40 алу өчен, 31 һәм 9 өстәгез.
\sqrt{x+6}=\frac{40}{10}
Ике якны 10-га бүлегез.
\sqrt{x+6}=4
4 алу өчен, 40 10'га бүлегез.
x+6=16
Тигезләмәнең ике ягының квадратын табыгыз.
x+6-6=16-6
Тигезләмәнең ике ягыннан 6 алыгыз.
x=16-6
6'ны үзеннән алу 0 калдыра.
x=10
6'ны 16'нан алыгыз.
\sqrt{10-9}+\sqrt{10+6}=5
\sqrt{x-9}+\sqrt{x+6}=5 тигезләмәдә x урынына 10 куегыз.
5=5
Гадиләштерегез. Кыйммәт x=10 формулага канәгатьләндерә.
x=10
\sqrt{x-9}=-\sqrt{x+6}+5 тигезләмәда уникаль чишелеш бар.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}