Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x+5y=4,x-3y=6
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x+5y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=-5y+4
Тигезләмәнең ике ягыннан 5y алыгыз.
x=\frac{1}{3}\left(-5y+4\right)
Ике якны 3-га бүлегез.
x=-\frac{5}{3}y+\frac{4}{3}
\frac{1}{3}'ны -5y+4 тапкыр тапкырлагыз.
-\frac{5}{3}y+\frac{4}{3}-3y=6
Башка тигезләмәдә x урынына \frac{-5y+4}{3} куегыз, x-3y=6.
-\frac{14}{3}y+\frac{4}{3}=6
-\frac{5y}{3}'ны -3y'га өстәгез.
-\frac{14}{3}y=\frac{14}{3}
Тигезләмәнең ике ягыннан \frac{4}{3} алыгыз.
y=-1
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{14}{3} тигезләмәнең ике ягын да бүлегез.
x=-\frac{5}{3}\left(-1\right)+\frac{4}{3}
-1'ны y өчен x=-\frac{5}{3}y+\frac{4}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{5+4}{3}
-\frac{5}{3}'ны -1 тапкыр тапкырлагыз.
x=3
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{4}{3}'ны \frac{5}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=3,y=-1
Система хәзер чишелгән.
3x+5y=4,x-3y=6
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5}&-\frac{5}{3\left(-3\right)-5}\\-\frac{1}{3\left(-3\right)-5}&\frac{3}{3\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 4+\frac{5}{14}\times 6\\\frac{1}{14}\times 4-\frac{3}{14}\times 6\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=-1
x һәм y матрица элементларын чыгартыгыз.
3x+5y=4,x-3y=6
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+5y=4,3x+3\left(-3\right)y=3\times 6
3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 3'га тапкырлагыз.
3x+5y=4,3x-9y=18
Гадиләштерегез.
3x-3x+5y+9y=4-18
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x-9y=18'ны 3x+5y=4'нан алыгыз.
5y+9y=4-18
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
14y=4-18
5y'ны 9y'га өстәгез.
14y=-14
4'ны -18'га өстәгез.
y=-1
Ике якны 14-га бүлегез.
x-3\left(-1\right)=6
-1'ны y өчен x-3y=6'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x+3=6
-3'ны -1 тапкыр тапкырлагыз.
x=3
Тигезләмәнең ике ягыннан 3 алыгыз.
x=3,y=-1
Система хәзер чишелгән.