Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x+2y=5,x+3y=-3
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x+2y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=-2y+5
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{3}\left(-2y+5\right)
Ике якны 3-га бүлегез.
x=-\frac{2}{3}y+\frac{5}{3}
\frac{1}{3}'ны -2y+5 тапкыр тапкырлагыз.
-\frac{2}{3}y+\frac{5}{3}+3y=-3
Башка тигезләмәдә x урынына \frac{-2y+5}{3} куегыз, x+3y=-3.
\frac{7}{3}y+\frac{5}{3}=-3
-\frac{2y}{3}'ны 3y'га өстәгез.
\frac{7}{3}y=-\frac{14}{3}
Тигезләмәнең ике ягыннан \frac{5}{3} алыгыз.
y=-2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{7}{3} тигезләмәнең ике ягын да бүлегез.
x=-\frac{2}{3}\left(-2\right)+\frac{5}{3}
-2'ны y өчен x=-\frac{2}{3}y+\frac{5}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{4+5}{3}
-\frac{2}{3}'ны -2 тапкыр тапкырлагыз.
x=3
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{5}{3}'ны \frac{4}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=3,y=-2
Система хәзер чишелгән.
3x+2y=5,x+3y=-3
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}3&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
\left(\begin{matrix}3&2\\1&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&3\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2}&-\frac{2}{3\times 3-2}\\-\frac{1}{3\times 3-2}&\frac{3}{3\times 3-2}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 5-\frac{2}{7}\left(-3\right)\\-\frac{1}{7}\times 5+\frac{3}{7}\left(-3\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=-2
x һәм y матрица элементларын чыгартыгыз.
3x+2y=5,x+3y=-3
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+2y=5,3x+3\times 3y=3\left(-3\right)
3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 3'га тапкырлагыз.
3x+2y=5,3x+9y=-9
Гадиләштерегез.
3x-3x+2y-9y=5+9
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+9y=-9'ны 3x+2y=5'нан алыгыз.
2y-9y=5+9
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
-7y=5+9
2y'ны -9y'га өстәгез.
-7y=14
5'ны 9'га өстәгез.
y=-2
Ике якны -7-га бүлегез.
x+3\left(-2\right)=-3
-2'ны y өчен x+3y=-3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x-6=-3
3'ны -2 тапкыр тапкырлагыз.
x=3
Тигезләмәнең ике ягына 6 өстәгез.
x=3,y=-2
Система хәзер чишелгән.