Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x-y=3,x-y=4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x-y=3
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=y+3
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{3}\left(y+3\right)
Ике якны 3-га бүлегез.
x=\frac{1}{3}y+1
\frac{1}{3}'ны y+3 тапкыр тапкырлагыз.
\frac{1}{3}y+1-y=4
Башка тигезләмәдә x урынына \frac{y}{3}+1 куегыз, x-y=4.
-\frac{2}{3}y+1=4
\frac{y}{3}'ны -y'га өстәгез.
-\frac{2}{3}y=3
Тигезләмәнең ике ягыннан 1 алыгыз.
y=-\frac{9}{2}
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{2}{3} тигезләмәнең ике ягын да бүлегез.
x=\frac{1}{3}\left(-\frac{9}{2}\right)+1
-\frac{9}{2}'ны y өчен x=\frac{1}{3}y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{3}{2}+1
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, \frac{1}{3}'ны -\frac{9}{2} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=-\frac{1}{2}
1'ны -\frac{3}{2}'га өстәгез.
x=-\frac{1}{2},y=-\frac{9}{2}
Система хәзер чишелгән.
3x-y=3,x-y=4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times 4\\\frac{1}{2}\times 3-\frac{3}{2}\times 4\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-\frac{9}{2}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-\frac{1}{2},y=-\frac{9}{2}
x һәм y матрица элементларын чыгартыгыз.
3x-y=3,x-y=4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x-x-y+y=3-4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, x-y=4'ны 3x-y=3'нан алыгыз.
3x-x=3-4
-y'ны y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -y һәм y шартлар кыскартылган.
2x=3-4
3x'ны -x'га өстәгез.
2x=-1
3'ны -4'га өстәгез.
x=-\frac{1}{2}
Ике якны 2-га бүлегез.
-\frac{1}{2}-y=4
-\frac{1}{2}'ны x өчен x-y=4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
-y=\frac{9}{2}
Тигезләмәнең ике ягына \frac{1}{2} өстәгез.
x=-\frac{1}{2},y=-\frac{9}{2}
Система хәзер чишелгән.