y, x өчен чишелеш
x=1
y=-5
Граф
Уртаклык
Клип тактага күчереп
y-x=-6
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+6x=1
Икенче тигезләмәне гадиләштерү. Ике як өчен 6x өстәгез.
y-x=-6,y+6x=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
y-x=-6
Тигезләмәләрнең берсен сайлагыз һәм аны, y'ны тигезләү тамгасының сул ягына аерып, y өчен чишегез.
y=x-6
Тигезләмәнең ике ягына x өстәгез.
x-6+6x=1
Башка тигезләмәдә y урынына x-6 куегыз, y+6x=1.
7x-6=1
x'ны 6x'га өстәгез.
7x=7
Тигезләмәнең ике ягына 6 өстәгез.
x=1
Ике якны 7-га бүлегез.
y=1-6
1'ны x өчен y=x-6'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-5
-6'ны 1'га өстәгез.
y=-5,x=1
Система хәзер чишелгән.
y-x=-6
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+6x=1
Икенче тигезләмәне гадиләштерү. Ике як өчен 6x өстәгез.
y-x=-6,y+6x=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-1\\1&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-6\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}1&-1\\1&6\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&6\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&6\end{matrix}\right))\left(\begin{matrix}-6\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6-\left(-1\right)}&-\frac{-1}{6-\left(-1\right)}\\-\frac{1}{6-\left(-1\right)}&\frac{1}{6-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-6\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}&\frac{1}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-6\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{6}{7}\left(-6\right)+\frac{1}{7}\\-\frac{1}{7}\left(-6\right)+\frac{1}{7}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
y=-5,x=1
y һәм x матрица элементларын чыгартыгыз.
y-x=-6
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+6x=1
Икенче тигезләмәне гадиләштерү. Ике як өчен 6x өстәгез.
y-x=-6,y+6x=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
y-y-x-6x=-6-1
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, y+6x=1'ны y-x=-6'нан алыгыз.
-x-6x=-6-1
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-7x=-6-1
-x'ны -6x'га өстәгез.
-7x=-7
-6'ны -1'га өстәгез.
x=1
Ике якны -7-га бүлегез.
y+6=1
1'ны x өчен y+6x=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-5
Тигезләмәнең ике ягыннан 6 алыгыз.
y=-5,x=1
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}