Төп эчтәлеккә скип
y, x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

y-x=2
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+x=-4
Икенче тигезләмәне гадиләштерү. Ике як өчен x өстәгез.
y-x=2,y+x=-4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
y-x=2
Тигезләмәләрнең берсен сайлагыз һәм аны, y'ны тигезләү тамгасының сул ягына аерып, y өчен чишегез.
y=x+2
Тигезләмәнең ике ягына x өстәгез.
x+2+x=-4
Башка тигезләмәдә y урынына x+2 куегыз, y+x=-4.
2x+2=-4
x'ны x'га өстәгез.
2x=-6
Тигезләмәнең ике ягыннан 2 алыгыз.
x=-3
Ике якны 2-га бүлегез.
y=-3+2
-3'ны x өчен y=x+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-1
2'ны -3'га өстәгез.
y=-1,x=-3
Система хәзер чишелгән.
y-x=2
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+x=-4
Икенче тигезләмәне гадиләштерү. Ике як өчен x өстәгез.
y-x=2,y+x=-4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\left(-4\right)\\-\frac{1}{2}\times 2+\frac{1}{2}\left(-4\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
y=-1,x=-3
y һәм x матрица элементларын чыгартыгыз.
y-x=2
Беренче тигезләмәне гадиләштерү. x'ны ике яктан алыгыз.
y+x=-4
Икенче тигезләмәне гадиләштерү. Ике як өчен x өстәгез.
y-x=2,y+x=-4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
y-y-x-x=2+4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, y+x=-4'ны y-x=2'нан алыгыз.
-x-x=2+4
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-2x=2+4
-x'ны -x'га өстәгез.
-2x=6
2'ны 4'га өстәгез.
x=-3
Ике якны -2-га бүлегез.
y-3=-4
-3'ны x өчен y+x=-4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-1
Тигезләмәнең ике ягына 3 өстәгез.
y=-1,x=-3
Система хәзер чишелгән.