y, x өчен чишелеш
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
y=-\frac{3}{5}=-0.6
Граф
Уртаклык
Клип тактага күчереп
y-2x=3
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y+3x=-6
Икенче тигезләмәне гадиләштерү. Ике як өчен 3x өстәгез.
y-2x=3,y+3x=-6
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
y-2x=3
Тигезләмәләрнең берсен сайлагыз һәм аны, y'ны тигезләү тамгасының сул ягына аерып, y өчен чишегез.
y=2x+3
Тигезләмәнең ике ягына 2x өстәгез.
2x+3+3x=-6
Башка тигезләмәдә y урынына 2x+3 куегыз, y+3x=-6.
5x+3=-6
2x'ны 3x'га өстәгез.
5x=-9
Тигезләмәнең ике ягыннан 3 алыгыз.
x=-\frac{9}{5}
Ике якны 5-га бүлегез.
y=2\left(-\frac{9}{5}\right)+3
-\frac{9}{5}'ны x өчен y=2x+3'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-\frac{18}{5}+3
2'ны -\frac{9}{5} тапкыр тапкырлагыз.
y=-\frac{3}{5}
3'ны -\frac{18}{5}'га өстәгез.
y=-\frac{3}{5},x=-\frac{9}{5}
Система хәзер чишелгән.
y-2x=3
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y+3x=-6
Икенче тигезләмәне гадиләштерү. Ике як өчен 3x өстәгез.
y-2x=3,y+3x=-6
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-2\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}1&-2\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&3\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 3+\frac{2}{5}\left(-6\right)\\-\frac{1}{5}\times 3+\frac{1}{5}\left(-6\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-\frac{9}{5}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
y=-\frac{3}{5},x=-\frac{9}{5}
y һәм x матрица элементларын чыгартыгыз.
y-2x=3
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y+3x=-6
Икенче тигезләмәне гадиләштерү. Ике як өчен 3x өстәгез.
y-2x=3,y+3x=-6
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
y-y-2x-3x=3+6
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, y+3x=-6'ны y-2x=3'нан алыгыз.
-2x-3x=3+6
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-5x=3+6
-2x'ны -3x'га өстәгез.
-5x=9
3'ны 6'га өстәгез.
x=-\frac{9}{5}
Ике якны -5-га бүлегез.
y+3\left(-\frac{9}{5}\right)=-6
-\frac{9}{5}'ны x өчен y+3x=-6'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y-\frac{27}{5}=-6
3'ны -\frac{9}{5} тапкыр тапкырлагыз.
y=-\frac{3}{5}
Тигезләмәнең ике ягына \frac{27}{5} өстәгез.
y=-\frac{3}{5},x=-\frac{9}{5}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}