Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x-4y=4,7x-7y=-14
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x-4y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=4y+4
Тигезләмәнең ике ягына 4y өстәгез.
7\left(4y+4\right)-7y=-14
Башка тигезләмәдә x урынына 4+4y куегыз, 7x-7y=-14.
28y+28-7y=-14
7'ны 4+4y тапкыр тапкырлагыз.
21y+28=-14
28y'ны -7y'га өстәгез.
21y=-42
Тигезләмәнең ике ягыннан 28 алыгыз.
y=-2
Ике якны 21-га бүлегез.
x=4\left(-2\right)+4
-2'ны y өчен x=4y+4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-8+4
4'ны -2 тапкыр тапкырлагыз.
x=-4
4'ны -8'га өстәгез.
x=-4,y=-2
Система хәзер чишелгән.
x-4y=4,7x-7y=-14
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-14\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\times 7\right)}&-\frac{-4}{-7-\left(-4\times 7\right)}\\-\frac{7}{-7-\left(-4\times 7\right)}&\frac{1}{-7-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{21}\\-\frac{1}{3}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{4}{21}\left(-14\right)\\-\frac{1}{3}\times 4+\frac{1}{21}\left(-14\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-4,y=-2
x һәм y матрица элементларын чыгартыгыз.
x-4y=4,7x-7y=-14
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
7x+7\left(-4\right)y=7\times 4,7x-7y=-14
x һәм 7x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 7'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
7x-28y=28,7x-7y=-14
Гадиләштерегез.
7x-7x-28y+7y=28+14
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 7x-7y=-14'ны 7x-28y=28'нан алыгыз.
-28y+7y=28+14
7x'ны -7x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 7x һәм -7x шартлар кыскартылган.
-21y=28+14
-28y'ны 7y'га өстәгез.
-21y=42
28'ны 14'га өстәгез.
y=-2
Ике якны -21-га бүлегез.
7x-7\left(-2\right)=-14
-2'ны y өчен 7x-7y=-14'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
7x+14=-14
-7'ны -2 тапкыр тапкырлагыз.
7x=-28
Тигезләмәнең ике ягыннан 14 алыгыз.
x=-4
Ике якны 7-га бүлегез.
x=-4,y=-2
Система хәзер чишелгән.