Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x-9y=0
Икенче тигезләмәне гадиләштерү. 9y'ны ике яктан алыгыз.
x+y=50,x-9y=0
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+y=50
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-y+50
Тигезләмәнең ике ягыннан y алыгыз.
-y+50-9y=0
Башка тигезләмәдә x урынына -y+50 куегыз, x-9y=0.
-10y+50=0
-y'ны -9y'га өстәгез.
-10y=-50
Тигезләмәнең ике ягыннан 50 алыгыз.
y=5
Ике якны -10-га бүлегез.
x=-5+50
5'ны y өчен x=-y+50'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=45
50'ны -5'га өстәгез.
x=45,y=5
Система хәзер чишелгән.
x-9y=0
Икенче тигезләмәне гадиләштерү. 9y'ны ике яктан алыгыз.
x+y=50,x-9y=0
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-9\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-1}&-\frac{1}{-9-1}\\-\frac{1}{-9-1}&\frac{1}{-9-1}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}\times 50\\\frac{1}{10}\times 50\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=45,y=5
x һәм y матрица элементларын чыгартыгыз.
x-9y=0
Икенче тигезләмәне гадиләштерү. 9y'ны ике яктан алыгыз.
x+y=50,x-9y=0
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-x+y+9y=50
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, x-9y=0'ны x+y=50'нан алыгыз.
y+9y=50
x'ны -x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, x һәм -x шартлар кыскартылган.
10y=50
y'ны 9y'га өстәгез.
y=5
Ике якны 10-га бүлегез.
x-9\times 5=0
5'ны y өчен x-9y=0'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x-45=0
-9'ны 5 тапкыр тапкырлагыз.
x=45
Тигезләмәнең ике ягына 45 өстәгез.
x=45,y=5
Система хәзер чишелгән.