Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+7-y=0
Беренче тигезләмәне гадиләштерү. y'ны ике яктан алыгыз.
x-y=-7
7'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
x-y=-7,3x+4y=0
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x-y=-7
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=y-7
Тигезләмәнең ике ягына y өстәгез.
3\left(y-7\right)+4y=0
Башка тигезләмәдә x урынына y-7 куегыз, 3x+4y=0.
3y-21+4y=0
3'ны y-7 тапкыр тапкырлагыз.
7y-21=0
3y'ны 4y'га өстәгез.
7y=21
Тигезләмәнең ике ягына 21 өстәгез.
y=3
Ике якны 7-га бүлегез.
x=3-7
3'ны y өчен x=y-7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-4
-7'ны 3'га өстәгез.
x=-4,y=3
Система хәзер чишелгән.
x+7-y=0
Беренче тигезләмәне гадиләштерү. y'ны ике яктан алыгыз.
x-y=-7
7'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
x-y=-7,3x+4y=0
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\3&4\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-3\right)}&-\frac{-1}{4-\left(-3\right)}\\-\frac{3}{4-\left(-3\right)}&\frac{1}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-7\right)\\-\frac{3}{7}\left(-7\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-4,y=3
x һәм y матрица элементларын чыгартыгыз.
x+7-y=0
Беренче тигезләмәне гадиләштерү. y'ны ике яктан алыгыз.
x-y=-7
7'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
x-y=-7,3x+4y=0
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+3\left(-1\right)y=3\left(-7\right),3x+4y=0
x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
3x-3y=-21,3x+4y=0
Гадиләштерегез.
3x-3x-3y-4y=-21
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x+4y=0'ны 3x-3y=-21'нан алыгыз.
-3y-4y=-21
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
-7y=-21
-3y'ны -4y'га өстәгез.
y=3
Ике якны -7-га бүлегез.
3x+4\times 3=0
3'ны y өчен 3x+4y=0'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x+12=0
4'ны 3 тапкыр тапкырлагыз.
3x=-12
Тигезләмәнең ике ягыннан 12 алыгыз.
x=-4
Ике якны 3-га бүлегез.
x=-4,y=3
Система хәзер чишелгән.