Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x+2y=5,x-y=4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
x+2y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
x=-2y+5
Тигезләмәнең ике ягыннан 2y алыгыз.
-2y+5-y=4
Башка тигезләмәдә x урынына -2y+5 куегыз, x-y=4.
-3y+5=4
-2y'ны -y'га өстәгез.
-3y=-1
Тигезләмәнең ике ягыннан 5 алыгыз.
y=\frac{1}{3}
Ике якны -3-га бүлегез.
x=-2\times \frac{1}{3}+5
\frac{1}{3}'ны y өчен x=-2y+5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{2}{3}+5
-2'ны \frac{1}{3} тапкыр тапкырлагыз.
x=\frac{13}{3}
5'ны -\frac{2}{3}'га өстәгез.
x=\frac{13}{3},y=\frac{1}{3}
Система хәзер чишелгән.
x+2y=5,x-y=4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5+\frac{2}{3}\times 4\\\frac{1}{3}\times 5-\frac{1}{3}\times 4\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{3}\\\frac{1}{3}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{13}{3},y=\frac{1}{3}
x һәм y матрица элементларын чыгартыгыз.
x+2y=5,x-y=4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
x-x+2y+y=5-4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, x-y=4'ны x+2y=5'нан алыгыз.
2y+y=5-4
x'ны -x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, x һәм -x шартлар кыскартылган.
3y=5-4
2y'ны y'га өстәгез.
3y=1
5'ны -4'га өстәгез.
y=\frac{1}{3}
Ике якны 3-га бүлегез.
x-\frac{1}{3}=4
\frac{1}{3}'ны y өчен x-y=4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{13}{3}
Тигезләмәнең ике ягына \frac{1}{3} өстәгез.
x=\frac{13}{3},y=\frac{1}{3}
Система хәзер чишелгән.