m, n өчен чишелеш
m=-1
n=3
Уртаклык
Клип тактага күчереп
m+2n=5,-2m+n+2=7
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
m+2n=5
Тигезләмәләрнең берсен сайлагыз һәм аны, m'ны тигезләү тамгасының сул ягына аерып, m өчен чишегез.
m=-2n+5
Тигезләмәнең ике ягыннан 2n алыгыз.
-2\left(-2n+5\right)+n+2=7
Башка тигезләмәдә m урынына -2n+5 куегыз, -2m+n+2=7.
4n-10+n+2=7
-2'ны -2n+5 тапкыр тапкырлагыз.
5n-10+2=7
4n'ны n'га өстәгез.
5n-8=7
-10'ны 2'га өстәгез.
5n=15
Тигезләмәнең ике ягына 8 өстәгез.
n=3
Ике якны 5-га бүлегез.
m=-2\times 3+5
3'ны n өчен m=-2n+5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры m өчен чишә аласыз.
m=-6+5
-2'ны 3 тапкыр тапкырлагыз.
m=-1
5'ны -6'га өстәгез.
m=-1,n=3
Система хәзер чишелгән.
m+2n=5,-2m+n+2=7
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 5-\frac{2}{5}\times 5\\\frac{2}{5}\times 5+\frac{1}{5}\times 5\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
m=-1,n=3
m һәм n матрица элементларын чыгартыгыз.
m+2n=5,-2m+n+2=7
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-2m-2\times 2n=-2\times 5,-2m+n+2=7
m һәм -2m тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 1'га тапкырлагыз.
-2m-4n=-10,-2m+n+2=7
Гадиләштерегез.
-2m+2m-4n-n-2=-10-7
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -2m+n+2=7'ны -2m-4n=-10'нан алыгыз.
-4n-n-2=-10-7
-2m'ны 2m'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -2m һәм 2m шартлар кыскартылган.
-5n-2=-10-7
-4n'ны -n'га өстәгез.
-5n-2=-17
-10'ны -7'га өстәгез.
-5n=-15
Тигезләмәнең ике ягына 2 өстәгез.
n=3
Ике якны -5-га бүлегез.
-2m+3+2=7
3'ны n өчен -2m+n+2=7'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры m өчен чишә аласыз.
-2m+5=7
3'ны 2'га өстәгез.
-2m=2
Тигезләмәнең ике ягыннан 5 алыгыз.
m=-1
Ике якны -2-га бүлегез.
m=-1,n=3
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}