Төп эчтәлеккә скип
a, b өчен чишелеш
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

a-b=0
Беренче тигезләмәне гадиләштерү. b'ны ике яктан алыгыз.
a-b=0,a+b=5
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
a-b=0
Тигезләмәләрнең берсен сайлагыз һәм аны, a'ны тигезләү тамгасының сул ягына аерып, a өчен чишегез.
a=b
Тигезләмәнең ике ягына b өстәгез.
b+b=5
Башка тигезләмәдә a урынына b куегыз, a+b=5.
2b=5
b'ны b'га өстәгез.
b=\frac{5}{2}
Ике якны 2-га бүлегез.
a=\frac{5}{2}
\frac{5}{2}'ны b өчен a=b'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры a өчен чишә аласыз.
a=\frac{5}{2},b=\frac{5}{2}
Система хәзер чишелгән.
a-b=0
Беренче тигезләмәне гадиләштерү. b'ны ике яктан алыгыз.
a-b=0,a+b=5
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
a=\frac{5}{2},b=\frac{5}{2}
a һәм b матрица элементларын чыгартыгыз.
a-b=0
Беренче тигезләмәне гадиләштерү. b'ны ике яктан алыгыз.
a-b=0,a+b=5
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
a-a-b-b=-5
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, a+b=5'ны a-b=0'нан алыгыз.
-b-b=-5
a'ны -a'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, a һәм -a шартлар кыскартылган.
-2b=-5
-b'ны -b'га өстәгез.
b=\frac{5}{2}
Ике якны -2-га бүлегез.
a+\frac{5}{2}=5
\frac{5}{2}'ны b өчен a+b=5'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры a өчен чишә аласыз.
a=\frac{5}{2}
Тигезләмәнең ике ягыннан \frac{5}{2} алыгыз.
a=\frac{5}{2},b=\frac{5}{2}
Система хәзер чишелгән.