Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

7x-8y=9,4x+3y=-10
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
7x-8y=9
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
7x=8y+9
Тигезләмәнең ике ягына 8y өстәгез.
x=\frac{1}{7}\left(8y+9\right)
Ике якны 7-га бүлегез.
x=\frac{8}{7}y+\frac{9}{7}
\frac{1}{7}'ны 8y+9 тапкыр тапкырлагыз.
4\left(\frac{8}{7}y+\frac{9}{7}\right)+3y=-10
Башка тигезләмәдә x урынына \frac{8y+9}{7} куегыз, 4x+3y=-10.
\frac{32}{7}y+\frac{36}{7}+3y=-10
4'ны \frac{8y+9}{7} тапкыр тапкырлагыз.
\frac{53}{7}y+\frac{36}{7}=-10
\frac{32y}{7}'ны 3y'га өстәгез.
\frac{53}{7}y=-\frac{106}{7}
Тигезләмәнең ике ягыннан \frac{36}{7} алыгыз.
y=-2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{53}{7} тигезләмәнең ике ягын да бүлегез.
x=\frac{8}{7}\left(-2\right)+\frac{9}{7}
-2'ны y өчен x=\frac{8}{7}y+\frac{9}{7}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-16+9}{7}
\frac{8}{7}'ны -2 тапкыр тапкырлагыз.
x=-1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{9}{7}'ны -\frac{16}{7}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=-1,y=-2
Система хәзер чишелгән.
7x-8y=9,4x+3y=-10
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-10\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}7&-8\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
\left(\begin{matrix}7&-8\\4&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-8\\4&3\end{matrix}\right))\left(\begin{matrix}9\\-10\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7\times 3-\left(-8\times 4\right)}&-\frac{-8}{7\times 3-\left(-8\times 4\right)}\\-\frac{4}{7\times 3-\left(-8\times 4\right)}&\frac{7}{7\times 3-\left(-8\times 4\right)}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}&\frac{8}{53}\\-\frac{4}{53}&\frac{7}{53}\end{matrix}\right)\left(\begin{matrix}9\\-10\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{53}\times 9+\frac{8}{53}\left(-10\right)\\-\frac{4}{53}\times 9+\frac{7}{53}\left(-10\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-1,y=-2
x һәм y матрица элементларын чыгартыгыз.
7x-8y=9,4x+3y=-10
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
4\times 7x+4\left(-8\right)y=4\times 9,7\times 4x+7\times 3y=7\left(-10\right)
7x һәм 4x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 4'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 7'га тапкырлагыз.
28x-32y=36,28x+21y=-70
Гадиләштерегез.
28x-28x-32y-21y=36+70
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 28x+21y=-70'ны 28x-32y=36'нан алыгыз.
-32y-21y=36+70
28x'ны -28x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 28x һәм -28x шартлар кыскартылган.
-53y=36+70
-32y'ны -21y'га өстәгез.
-53y=106
36'ны 70'га өстәгез.
y=-2
Ике якны -53-га бүлегез.
4x+3\left(-2\right)=-10
-2'ны y өчен 4x+3y=-10'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
4x-6=-10
3'ны -2 тапкыр тапкырлагыз.
4x=-4
Тигезләмәнең ике ягына 6 өстәгез.
x=-1
Ике якны 4-га бүлегез.
x=-1,y=-2
Система хәзер чишелгән.