Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

7x-2y=11,x+y=8
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
7x-2y=11
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
7x=2y+11
Тигезләмәнең ике ягына 2y өстәгез.
x=\frac{1}{7}\left(2y+11\right)
Ике якны 7-га бүлегез.
x=\frac{2}{7}y+\frac{11}{7}
\frac{1}{7}'ны 2y+11 тапкыр тапкырлагыз.
\frac{2}{7}y+\frac{11}{7}+y=8
Башка тигезләмәдә x урынына \frac{2y+11}{7} куегыз, x+y=8.
\frac{9}{7}y+\frac{11}{7}=8
\frac{2y}{7}'ны y'га өстәгез.
\frac{9}{7}y=\frac{45}{7}
Тигезләмәнең ике ягыннан \frac{11}{7} алыгыз.
y=5
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{9}{7} тигезләмәнең ике ягын да бүлегез.
x=\frac{2}{7}\times 5+\frac{11}{7}
5'ны y өчен x=\frac{2}{7}y+\frac{11}{7}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{10+11}{7}
\frac{2}{7}'ны 5 тапкыр тапкырлагыз.
x=3
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{11}{7}'ны \frac{10}{7}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=3,y=5
Система хәзер чишелгән.
7x-2y=11,x+y=8
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-\left(-2\right)}&-\frac{-2}{7-\left(-2\right)}\\-\frac{1}{7-\left(-2\right)}&\frac{7}{7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{2}{9}\\-\frac{1}{9}&\frac{7}{9}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 11+\frac{2}{9}\times 8\\-\frac{1}{9}\times 11+\frac{7}{9}\times 8\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=3,y=5
x һәм y матрица элементларын чыгартыгыз.
7x-2y=11,x+y=8
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
7x-2y=11,7x+7y=7\times 8
7x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 7'га тапкырлагыз.
7x-2y=11,7x+7y=56
Гадиләштерегез.
7x-7x-2y-7y=11-56
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 7x+7y=56'ны 7x-2y=11'нан алыгыз.
-2y-7y=11-56
7x'ны -7x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 7x һәм -7x шартлар кыскартылган.
-9y=11-56
-2y'ны -7y'га өстәгез.
-9y=-45
11'ны -56'га өстәгез.
y=5
Ике якны -9-га бүлегез.
x+5=8
5'ны y өчен x+y=8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=3
Тигезләмәнең ике ягыннан 5 алыгыз.
x=3,y=5
Система хәзер чишелгән.