x, y өчен чишелеш
x=1
y=2
Граф
Уртаклык
Клип тактага күчереп
5x-7y=-9,-2x-y=-4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
5x-7y=-9
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
5x=7y-9
Тигезләмәнең ике ягына 7y өстәгез.
x=\frac{1}{5}\left(7y-9\right)
Ике якны 5-га бүлегез.
x=\frac{7}{5}y-\frac{9}{5}
\frac{1}{5}'ны 7y-9 тапкыр тапкырлагыз.
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
Башка тигезләмәдә x урынына \frac{7y-9}{5} куегыз, -2x-y=-4.
-\frac{14}{5}y+\frac{18}{5}-y=-4
-2'ны \frac{7y-9}{5} тапкыр тапкырлагыз.
-\frac{19}{5}y+\frac{18}{5}=-4
-\frac{14y}{5}'ны -y'га өстәгез.
-\frac{19}{5}y=-\frac{38}{5}
Тигезләмәнең ике ягыннан \frac{18}{5} алыгыз.
y=2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{19}{5} тигезләмәнең ике ягын да бүлегез.
x=\frac{7}{5}\times 2-\frac{9}{5}
2'ны y өчен x=\frac{7}{5}y-\frac{9}{5}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{14-9}{5}
\frac{7}{5}'ны 2 тапкыр тапкырлагыз.
x=1
Гомуми ваклаучыны табып һәм санаучыларны өстәп, -\frac{9}{5}'ны \frac{14}{5}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=1,y=2
Система хәзер чишелгән.
5x-7y=-9,-2x-y=-4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=2
x һәм y матрица элементларын чыгартыгыз.
5x-7y=-9,-2x-y=-4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
5x һәм -2x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны -2'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 5'га тапкырлагыз.
-10x+14y=18,-10x-5y=-20
Гадиләштерегез.
-10x+10x+14y+5y=18+20
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, -10x-5y=-20'ны -10x+14y=18'нан алыгыз.
14y+5y=18+20
-10x'ны 10x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -10x һәм 10x шартлар кыскартылган.
19y=18+20
14y'ны 5y'га өстәгез.
19y=38
18'ны 20'га өстәгез.
y=2
Ике якны 19-га бүлегез.
-2x-2=-4
2'ны y өчен -2x-y=-4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-2x=-2
Тигезләмәнең ике ягына 2 өстәгез.
x=1
Ике якны -2-га бүлегез.
x=1,y=2
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}