Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

4x-3y=5,3x+2y=8
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
4x-3y=5
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
4x=3y+5
Тигезләмәнең ике ягына 3y өстәгез.
x=\frac{1}{4}\left(3y+5\right)
Ике якны 4-га бүлегез.
x=\frac{3}{4}y+\frac{5}{4}
\frac{1}{4}'ны 3y+5 тапкыр тапкырлагыз.
3\left(\frac{3}{4}y+\frac{5}{4}\right)+2y=8
Башка тигезләмәдә x урынына \frac{3y+5}{4} куегыз, 3x+2y=8.
\frac{9}{4}y+\frac{15}{4}+2y=8
3'ны \frac{3y+5}{4} тапкыр тапкырлагыз.
\frac{17}{4}y+\frac{15}{4}=8
\frac{9y}{4}'ны 2y'га өстәгез.
\frac{17}{4}y=\frac{17}{4}
Тигезләмәнең ике ягыннан \frac{15}{4} алыгыз.
y=1
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{17}{4} тигезләмәнең ике ягын да бүлегез.
x=\frac{3+5}{4}
1'ны y өчен x=\frac{3}{4}y+\frac{5}{4}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=2
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{5}{4}'ны \frac{3}{4}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=2,y=1
Система хәзер чишелгән.
4x-3y=5,3x+2y=8
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}4&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\8\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}4&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
\left(\begin{matrix}4&-3\\3&2\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\times 3\right)}&-\frac{-3}{4\times 2-\left(-3\times 3\right)}\\-\frac{3}{4\times 2-\left(-3\times 3\right)}&\frac{4}{4\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\-\frac{3}{17}&\frac{4}{17}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{3}{17}\times 8\\-\frac{3}{17}\times 5+\frac{4}{17}\times 8\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=2,y=1
x һәм y матрица элементларын чыгартыгыз.
4x-3y=5,3x+2y=8
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 4x+3\left(-3\right)y=3\times 5,4\times 3x+4\times 2y=4\times 8
4x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 4'га тапкырлагыз.
12x-9y=15,12x+8y=32
Гадиләштерегез.
12x-12x-9y-8y=15-32
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 12x+8y=32'ны 12x-9y=15'нан алыгыз.
-9y-8y=15-32
12x'ны -12x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 12x һәм -12x шартлар кыскартылган.
-17y=15-32
-9y'ны -8y'га өстәгез.
-17y=-17
15'ны -32'га өстәгез.
y=1
Ике якны -17-га бүлегез.
3x+2=8
1'ны y өчен 3x+2y=8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x=6
Тигезләмәнең ике ягыннан 2 алыгыз.
x=2
Ике якны 3-га бүлегез.
x=2,y=1
Система хәзер чишелгән.