y, x өчен чишелеш
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=1
Граф
Уртаклык
Клип тактага күчереп
4-y-2x=0
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
-y-2x=-4
4'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
2+y-2x=0
Икенче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y-2x=-2
2'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
-y-2x=-4,y-2x=-2
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
-y-2x=-4
Тигезләмәләрнең берсен сайлагыз һәм аны, y'ны тигезләү тамгасының сул ягына аерып, y өчен чишегез.
-y=2x-4
Тигезләмәнең ике ягына 2x өстәгез.
y=-\left(2x-4\right)
Ике якны -1-га бүлегез.
y=-2x+4
-1'ны -4+2x тапкыр тапкырлагыз.
-2x+4-2x=-2
Башка тигезләмәдә y урынына -2x+4 куегыз, y-2x=-2.
-4x+4=-2
-2x'ны -2x'га өстәгез.
-4x=-6
Тигезләмәнең ике ягыннан 4 алыгыз.
x=\frac{3}{2}
Ике якны -4-га бүлегез.
y=-2\times \frac{3}{2}+4
\frac{3}{2}'ны x өчен y=-2x+4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
y=-3+4
-2'ны \frac{3}{2} тапкыр тапкырлагыз.
y=1
4'ны -3'га өстәгез.
y=1,x=\frac{3}{2}
Система хәзер чишелгән.
4-y-2x=0
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
-y-2x=-4
4'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
2+y-2x=0
Икенче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y-2x=-2
2'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
-y-2x=-4,y-2x=-2
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-2\right)}&-\frac{-2}{-\left(-2\right)-\left(-2\right)}\\-\frac{1}{-\left(-2\right)-\left(-2\right)}&-\frac{1}{-\left(-2\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-4\right)+\frac{1}{2}\left(-2\right)\\-\frac{1}{4}\left(-4\right)-\frac{1}{4}\left(-2\right)\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\\frac{3}{2}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
y=1,x=\frac{3}{2}
y һәм x матрица элементларын чыгартыгыз.
4-y-2x=0
Беренче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
-y-2x=-4
4'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
2+y-2x=0
Икенче тигезләмәне гадиләштерү. 2x'ны ике яктан алыгыз.
y-2x=-2
2'ны ике яктан алыгыз. Нульдән теләсә кайсы әйбер алынса, аның тискәре саны булып чыга.
-y-2x=-4,y-2x=-2
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
-y-y-2x+2x=-4+2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, y-2x=-2'ны -y-2x=-4'нан алыгыз.
-y-y=-4+2
-2x'ны 2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, -2x һәм 2x шартлар кыскартылган.
-2y=-4+2
-y'ны -y'га өстәгез.
-2y=-2
-4'ны 2'га өстәгез.
y=1
Ике якны -2-га бүлегез.
1-2x=-2
1'ны y өчен y-2x=-2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
-2x=-3
Тигезләмәнең ике ягыннан 1 алыгыз.
y=1,x=\frac{3}{2}
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}