x, y өчен чишелеш
x=0
y=4
Граф
Уртаклык
Клип тактага күчереп
3x+y=4,6x+y=4
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x+y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=-y+4
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{3}\left(-y+4\right)
Ике якны 3-га бүлегез.
x=-\frac{1}{3}y+\frac{4}{3}
\frac{1}{3}'ны -y+4 тапкыр тапкырлагыз.
6\left(-\frac{1}{3}y+\frac{4}{3}\right)+y=4
Башка тигезләмәдә x урынына \frac{-y+4}{3} куегыз, 6x+y=4.
-2y+8+y=4
6'ны \frac{-y+4}{3} тапкыр тапкырлагыз.
-y+8=4
-2y'ны y'га өстәгез.
-y=-4
Тигезләмәнең ике ягыннан 8 алыгыз.
y=4
Ике якны -1-га бүлегез.
x=-\frac{1}{3}\times 4+\frac{4}{3}
4'ны y өчен x=-\frac{1}{3}y+\frac{4}{3}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-4+4}{3}
-\frac{1}{3}'ны 4 тапкыр тапкырлагыз.
x=0
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{4}{3}'ны -\frac{4}{3}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=0,y=4
Система хәзер чишелгән.
3x+y=4,6x+y=4
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
\left(\begin{matrix}3&1\\6&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{1}{3-6}\\-\frac{6}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 4\\2\times 4-4\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\4\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=0,y=4
x һәм y матрица элементларын чыгартыгыз.
3x+y=4,6x+y=4
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x-6x+y-y=4-4
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x+y=4'ны 3x+y=4'нан алыгыз.
3x-6x=4-4
y'ны -y'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, y һәм -y шартлар кыскартылган.
-3x=4-4
3x'ны -6x'га өстәгез.
-3x=0
4'ны -4'га өстәгез.
x=0
Ике якны -3-га бүлегез.
y=4
0'ны x өчен 6x+y=4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры y өчен чишә аласыз.
x=0,y=4
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}