Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

3x+2y=3,x-y=21
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
3x+2y=3
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
3x=-2y+3
Тигезләмәнең ике ягыннан 2y алыгыз.
x=\frac{1}{3}\left(-2y+3\right)
Ике якны 3-га бүлегез.
x=-\frac{2}{3}y+1
\frac{1}{3}'ны -2y+3 тапкыр тапкырлагыз.
-\frac{2}{3}y+1-y=21
Башка тигезләмәдә x урынына -\frac{2y}{3}+1 куегыз, x-y=21.
-\frac{5}{3}y+1=21
-\frac{2y}{3}'ны -y'га өстәгез.
-\frac{5}{3}y=20
Тигезләмәнең ике ягыннан 1 алыгыз.
y=-12
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{5}{3} тигезләмәнең ике ягын да бүлегез.
x=-\frac{2}{3}\left(-12\right)+1
-12'ны y өчен x=-\frac{2}{3}y+1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=8+1
-\frac{2}{3}'ны -12 тапкыр тапкырлагыз.
x=9
1'ны 8'га өстәгез.
x=9,y=-12
Система хәзер чишелгән.
3x+2y=3,x-y=21
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\21\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
\left(\begin{matrix}3&2\\1&-1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\21\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{2}{3\left(-1\right)-2}\\-\frac{1}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}3\\21\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{2}{5}\times 21\\\frac{1}{5}\times 3-\frac{3}{5}\times 21\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-12\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=9,y=-12
x һәм y матрица элементларын чыгартыгыз.
3x+2y=3,x-y=21
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3x+2y=3,3x+3\left(-1\right)y=3\times 21
3x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 3'га тапкырлагыз.
3x+2y=3,3x-3y=63
Гадиләштерегез.
3x-3x+2y+3y=3-63
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 3x-3y=63'ны 3x+2y=3'нан алыгыз.
2y+3y=3-63
3x'ны -3x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 3x һәм -3x шартлар кыскартылган.
5y=3-63
2y'ны 3y'га өстәгез.
5y=-60
3'ны -63'га өстәгез.
y=-12
Ике якны 5-га бүлегез.
x-\left(-12\right)=21
-12'ны y өчен x-y=21'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=9
Тигезләмәнең ике ягыннан 12 алыгыз.
x=9,y=-12
Система хәзер чишелгән.