Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x-y=4,3x+y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x-y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=y+4
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{2}\left(y+4\right)
Ике якны 2-га бүлегез.
x=\frac{1}{2}y+2
\frac{1}{2}'ны y+4 тапкыр тапкырлагыз.
3\left(\frac{1}{2}y+2\right)+y=1
Башка тигезләмәдә x урынына \frac{y}{2}+2 куегыз, 3x+y=1.
\frac{3}{2}y+6+y=1
3'ны \frac{y}{2}+2 тапкыр тапкырлагыз.
\frac{5}{2}y+6=1
\frac{3y}{2}'ны y'га өстәгез.
\frac{5}{2}y=-5
Тигезләмәнең ике ягыннан 6 алыгыз.
y=-2
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{5}{2} тигезләмәнең ике ягын да бүлегез.
x=\frac{1}{2}\left(-2\right)+2
-2'ны y өчен x=\frac{1}{2}y+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-1+2
\frac{1}{2}'ны -2 тапкыр тапкырлагыз.
x=1
2'ны -1'га өстәгез.
x=1,y=-2
Система хәзер чишелгән.
2x-y=4,3x+y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{1}{5}\\-\frac{3}{5}\times 4+\frac{2}{5}\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=1,y=-2
x һәм y матрица элементларын чыгартыгыз.
2x-y=4,3x+y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2y=2
2x һәм 3x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 3'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
6x-3y=12,6x+2y=2
Гадиләштерегез.
6x-6x-3y-2y=12-2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 6x+2y=2'ны 6x-3y=12'нан алыгыз.
-3y-2y=12-2
6x'ны -6x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 6x һәм -6x шартлар кыскартылган.
-5y=12-2
-3y'ны -2y'га өстәгез.
-5y=10
12'ны -2'га өстәгез.
y=-2
Ике якны -5-га бүлегез.
3x-2=1
-2'ны y өчен 3x+y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
3x=3
Тигезләмәнең ике ягына 2 өстәгез.
x=1
Ике якны 3-га бүлегез.
x=1,y=-2
Система хәзер чишелгән.