Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x-y=0,5x-2y=1
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x-y=0
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=y
Тигезләмәнең ике ягына y өстәгез.
x=\frac{1}{2}y
Ике якны 2-га бүлегез.
5\times \frac{1}{2}y-2y=1
Башка тигезләмәдә x урынына \frac{y}{2} куегыз, 5x-2y=1.
\frac{5}{2}y-2y=1
5'ны \frac{y}{2} тапкыр тапкырлагыз.
\frac{1}{2}y=1
\frac{5y}{2}'ны -2y'га өстәгез.
y=2
Ике якны 2-га тапкырлагыз.
x=\frac{1}{2}\times 2
2'ны y өчен x=\frac{1}{2}y'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=1
\frac{1}{2}'ны 2 тапкыр тапкырлагыз.
x=1,y=2
Система хәзер чишелгән.
2x-y=0,5x-2y=1
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-5\right)}&-\frac{-1}{2\left(-2\right)-\left(-5\right)}\\-\frac{5}{2\left(-2\right)-\left(-5\right)}&\frac{2}{2\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\-5&2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Матрицаларны тапкырлагыз.
x=1,y=2
x һәм y матрица элементларын чыгартыгыз.
2x-y=0,5x-2y=1
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5\times 2x+5\left(-1\right)y=0,2\times 5x+2\left(-2\right)y=2
2x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
10x-5y=0,10x-4y=2
Гадиләштерегез.
10x-10x-5y+4y=-2
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 10x-4y=2'ны 10x-5y=0'нан алыгыз.
-5y+4y=-2
10x'ны -10x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 10x һәм -10x шартлар кыскартылган.
-y=-2
-5y'ны 4y'га өстәгез.
y=2
Ике якны -1-га бүлегез.
5x-2\times 2=1
2'ны y өчен 5x-2y=1'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x-4=1
-2'ны 2 тапкыр тапкырлагыз.
5x=5
Тигезләмәнең ике ягына 4 өстәгез.
x=1
Ике якны 5-га бүлегез.
x=1,y=2
Система хәзер чишелгән.