Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+y=4,x+3y=8
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+y=4
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-y+4
Тигезләмәнең ике ягыннан y алыгыз.
x=\frac{1}{2}\left(-y+4\right)
Ике якны 2-га бүлегез.
x=-\frac{1}{2}y+2
\frac{1}{2}'ны -y+4 тапкыр тапкырлагыз.
-\frac{1}{2}y+2+3y=8
Башка тигезләмәдә x урынына -\frac{y}{2}+2 куегыз, x+3y=8.
\frac{5}{2}y+2=8
-\frac{y}{2}'ны 3y'га өстәгез.
\frac{5}{2}y=6
Тигезләмәнең ике ягыннан 2 алыгыз.
y=\frac{12}{5}
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган \frac{5}{2} тигезләмәнең ике ягын да бүлегез.
x=-\frac{1}{2}\times \frac{12}{5}+2
\frac{12}{5}'ны y өчен x=-\frac{1}{2}y+2'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{6}{5}+2
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, -\frac{1}{2}'ны \frac{12}{5} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{4}{5}
2'ны -\frac{6}{5}'га өстәгез.
x=\frac{4}{5},y=\frac{12}{5}
Система хәзер чишелгән.
2x+y=4,x+3y=8
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
\left(\begin{matrix}2&1\\1&3\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-1}&-\frac{1}{2\times 3-1}\\-\frac{1}{2\times 3-1}&\frac{2}{2\times 3-1}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4-\frac{1}{5}\times 8\\-\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\\frac{12}{5}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{4}{5},y=\frac{12}{5}
x һәм y матрица элементларын чыгартыгыз.
2x+y=4,x+3y=8
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
2x+y=4,2x+2\times 3y=2\times 8
2x һәм x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 1'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
2x+y=4,2x+6y=16
Гадиләштерегез.
2x-2x+y-6y=4-16
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 2x+6y=16'ны 2x+y=4'нан алыгыз.
y-6y=4-16
2x'ны -2x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 2x һәм -2x шартлар кыскартылган.
-5y=4-16
y'ны -6y'га өстәгез.
-5y=-12
4'ны -16'га өстәгез.
y=\frac{12}{5}
Ике якны -5-га бүлегез.
x+3\times \frac{12}{5}=8
\frac{12}{5}'ны y өчен x+3y=8'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x+\frac{36}{5}=8
3'ны \frac{12}{5} тапкыр тапкырлагыз.
x=\frac{4}{5}
Тигезләмәнең ике ягыннан \frac{36}{5} алыгыз.
x=\frac{4}{5},y=\frac{12}{5}
Система хәзер чишелгән.