x, y өчен чишелеш
x=6
y=1
Граф
Уртаклык
Клип тактага күчереп
2x+5y=17,5x+y=31
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+5y=17
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-5y+17
Тигезләмәнең ике ягыннан 5y алыгыз.
x=\frac{1}{2}\left(-5y+17\right)
Ике якны 2-га бүлегез.
x=-\frac{5}{2}y+\frac{17}{2}
\frac{1}{2}'ны -5y+17 тапкыр тапкырлагыз.
5\left(-\frac{5}{2}y+\frac{17}{2}\right)+y=31
Башка тигезләмәдә x урынына \frac{-5y+17}{2} куегыз, 5x+y=31.
-\frac{25}{2}y+\frac{85}{2}+y=31
5'ны \frac{-5y+17}{2} тапкыр тапкырлагыз.
-\frac{23}{2}y+\frac{85}{2}=31
-\frac{25y}{2}'ны y'га өстәгез.
-\frac{23}{2}y=-\frac{23}{2}
Тигезләмәнең ике ягыннан \frac{85}{2} алыгыз.
y=1
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{23}{2} тигезләмәнең ике ягын да бүлегез.
x=\frac{-5+17}{2}
1'ны y өчен x=-\frac{5}{2}y+\frac{17}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=6
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{17}{2}'ны -\frac{5}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=6,y=1
Система хәзер чишелгән.
2x+5y=17,5x+y=31
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&5\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\31\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&5\\5&1\end{matrix}\right))\left(\begin{matrix}2&5\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&1\end{matrix}\right))\left(\begin{matrix}17\\31\end{matrix}\right)
\left(\begin{matrix}2&5\\5&1\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&1\end{matrix}\right))\left(\begin{matrix}17\\31\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&1\end{matrix}\right))\left(\begin{matrix}17\\31\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\times 5}&-\frac{5}{2-5\times 5}\\-\frac{5}{2-5\times 5}&\frac{2}{2-5\times 5}\end{matrix}\right)\left(\begin{matrix}17\\31\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{23}&\frac{5}{23}\\\frac{5}{23}&-\frac{2}{23}\end{matrix}\right)\left(\begin{matrix}17\\31\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{23}\times 17+\frac{5}{23}\times 31\\\frac{5}{23}\times 17-\frac{2}{23}\times 31\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\1\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=6,y=1
x һәм y матрица элементларын чыгартыгыз.
2x+5y=17,5x+y=31
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5\times 2x+5\times 5y=5\times 17,2\times 5x+2y=2\times 31
2x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
10x+25y=85,10x+2y=62
Гадиләштерегез.
10x-10x+25y-2y=85-62
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 10x+2y=62'ны 10x+25y=85'нан алыгыз.
25y-2y=85-62
10x'ны -10x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 10x һәм -10x шартлар кыскартылган.
23y=85-62
25y'ны -2y'га өстәгез.
23y=23
85'ны -62'га өстәгез.
y=1
Ике якны 23-га бүлегез.
5x+1=31
1'ны y өчен 5x+y=31'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x=30
Тигезләмәнең ике ягыннан 1 алыгыз.
x=6
Ике якны 5-га бүлегез.
x=6,y=1
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}