Төп эчтәлеккә скип
x, y өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

2x+3y=8,9x+4y=14
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+3y=8
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-3y+8
Тигезләмәнең ике ягыннан 3y алыгыз.
x=\frac{1}{2}\left(-3y+8\right)
Ике якны 2-га бүлегез.
x=-\frac{3}{2}y+4
\frac{1}{2}'ны -3y+8 тапкыр тапкырлагыз.
9\left(-\frac{3}{2}y+4\right)+4y=14
Башка тигезләмәдә x урынына -\frac{3y}{2}+4 куегыз, 9x+4y=14.
-\frac{27}{2}y+36+4y=14
9'ны -\frac{3y}{2}+4 тапкыр тапкырлагыз.
-\frac{19}{2}y+36=14
-\frac{27y}{2}'ны 4y'га өстәгез.
-\frac{19}{2}y=-22
Тигезләмәнең ике ягыннан 36 алыгыз.
y=\frac{44}{19}
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{19}{2} тигезләмәнең ике ягын да бүлегез.
x=-\frac{3}{2}\times \frac{44}{19}+4
\frac{44}{19}'ны y өчен x=-\frac{3}{2}y+4'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=-\frac{66}{19}+4
Санаучыны санаучыга һәм ваклаучыны ваклаучыга тапкырлап, -\frac{3}{2}'ны \frac{44}{19} тапкыр тапкырлагыз. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=\frac{10}{19}
4'ны -\frac{66}{19}'га өстәгез.
x=\frac{10}{19},y=\frac{44}{19}
Система хәзер чишелгән.
2x+3y=8,9x+4y=14
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&3\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}2&3\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}2&3\\9&4\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 9}&-\frac{3}{2\times 4-3\times 9}\\-\frac{9}{2\times 4-3\times 9}&\frac{2}{2\times 4-3\times 9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}&\frac{3}{19}\\\frac{9}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}\times 8+\frac{3}{19}\times 14\\\frac{9}{19}\times 8-\frac{2}{19}\times 14\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{19}\\\frac{44}{19}\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=\frac{10}{19},y=\frac{44}{19}
x һәм y матрица элементларын чыгартыгыз.
2x+3y=8,9x+4y=14
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
9\times 2x+9\times 3y=9\times 8,2\times 9x+2\times 4y=2\times 14
2x һәм 9x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 9'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
18x+27y=72,18x+8y=28
Гадиләштерегез.
18x-18x+27y-8y=72-28
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 18x+8y=28'ны 18x+27y=72'нан алыгыз.
27y-8y=72-28
18x'ны -18x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 18x һәм -18x шартлар кыскартылган.
19y=72-28
27y'ны -8y'га өстәгез.
19y=44
72'ны -28'га өстәгез.
y=\frac{44}{19}
Ике якны 19-га бүлегез.
9x+4\times \frac{44}{19}=14
\frac{44}{19}'ны y өчен 9x+4y=14'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
9x+\frac{176}{19}=14
4'ны \frac{44}{19} тапкыр тапкырлагыз.
9x=\frac{90}{19}
Тигезләмәнең ике ягыннан \frac{176}{19} алыгыз.
x=\frac{10}{19}
Ике якны 9-га бүлегез.
x=\frac{10}{19},y=\frac{44}{19}
Система хәзер чишелгән.