x, y өчен чишелеш
x=-3
y=7
Граф
Уртаклык
Клип тактага күчереп
2x+3y=15,5x+4y=13
Тигезләмәләр парын алмаштыруны кулланып чишү өчен, башта тигезләмәләрнең берсен алмашынучанлыларның берсе өчен чишегез. Аннары әлеге алмашынучан өчен нәтиҗәне башка тигезләмәгә куегыз.
2x+3y=15
Тигезләмәләрнең берсен сайлагыз һәм аны, x'ны тигезләү тамгасының сул ягына аерып, x өчен чишегез.
2x=-3y+15
Тигезләмәнең ике ягыннан 3y алыгыз.
x=\frac{1}{2}\left(-3y+15\right)
Ике якны 2-га бүлегез.
x=-\frac{3}{2}y+\frac{15}{2}
\frac{1}{2}'ны -3y+15 тапкыр тапкырлагыз.
5\left(-\frac{3}{2}y+\frac{15}{2}\right)+4y=13
Башка тигезләмәдә x урынына \frac{-3y+15}{2} куегыз, 5x+4y=13.
-\frac{15}{2}y+\frac{75}{2}+4y=13
5'ны \frac{-3y+15}{2} тапкыр тапкырлагыз.
-\frac{7}{2}y+\frac{75}{2}=13
-\frac{15y}{2}'ны 4y'га өстәгез.
-\frac{7}{2}y=-\frac{49}{2}
Тигезләмәнең ике ягыннан \frac{75}{2} алыгыз.
y=7
Ике ягын да вакланманың кире зурлыгына тапкырлауга тиңдәш булган -\frac{7}{2} тигезләмәнең ике ягын да бүлегез.
x=-\frac{3}{2}\times 7+\frac{15}{2}
7'ны y өчен x=-\frac{3}{2}y+\frac{15}{2}'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
x=\frac{-21+15}{2}
-\frac{3}{2}'ны 7 тапкыр тапкырлагыз.
x=-3
Гомуми ваклаучыны табып һәм санаучыларны өстәп, \frac{15}{2}'ны -\frac{21}{2}'га өстәгез. Аннары вакланманы мөмкин булган иң түбән элементка кадәр киметегез.
x=-3,y=7
Система хәзер чишелгән.
2x+3y=15,5x+4y=13
Тигезләмәләрне стандарт формага урнаштырыгыз, аннары тигезләмәләрнең системасын чишү өчен, матрицаларны кулланыгыз.
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\13\end{matrix}\right)
Тигезләмәләрне матрица формасында языгыз.
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right) кире матрицасына тигезләмәне сулга тапкырлагыз.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
Матрицаны һәм аның кире кыйммәтен тапкырлау бердәйлек матрицасы була.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}15\\13\end{matrix}\right)
Сул як тигезләү тамгасында матрицаны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы өчен кире матрица - \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), шуңа күрә матрица тигезләмәсен матрицаны тапкырлау мәсьәләсе буларак яңадан язып була.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}15\\13\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 15+\frac{3}{7}\times 13\\\frac{5}{7}\times 15-\frac{2}{7}\times 13\end{matrix}\right)
Матрицаларны тапкырлагыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
Арифметик гамәлләрне башкарыгыз.
x=-3,y=7
x һәм y матрица элементларын чыгартыгыз.
2x+3y=15,5x+4y=13
Бетерү ысулы белән чишү өчен, алмашынучанлыларның бер коэффициенты ике тигезләмәдә дә тиңдәш булырга тиеш, шулай итеп, бер тигезләмә икенчесеннән алынса, алмашынучан баш тартачак.
5\times 2x+5\times 3y=5\times 15,2\times 5x+2\times 4y=2\times 13
2x һәм 5x тигез итү өчен, беренче тигезләмәнең һәр ягындагы барлык элементларны 5'га һәм икенче тигезләмәнең һәр ягындагы барлык элементларны 2'га тапкырлагыз.
10x+15y=75,10x+8y=26
Гадиләштерегез.
10x-10x+15y-8y=75-26
Тигезләү тамгасыннан һәр ягыннан охшаш элементларны алып, 10x+8y=26'ны 10x+15y=75'нан алыгыз.
15y-8y=75-26
10x'ны -10x'га өстәгез. Чишелергә мөмкин бер генә алмашынучанлы белән тигезләмәне калдырып, 10x һәм -10x шартлар кыскартылган.
7y=75-26
15y'ны -8y'га өстәгез.
7y=49
75'ны -26'га өстәгез.
y=7
Ике якны 7-га бүлегез.
5x+4\times 7=13
7'ны y өчен 5x+4y=13'да алыштырыгыз. Нәтиҗә тигезләмәнең эчендә бер генә алмашынучан булгач, сез турыдан-туры x өчен чишә аласыз.
5x+28=13
4'ны 7 тапкыр тапкырлагыз.
5x=-15
Тигезләмәнең ике ягыннан 28 алыгыз.
x=-3
Ике якны 5-га бүлегез.
x=-3,y=7
Система хәзер чишелгән.
Мисаллар
Квадратик тигезләмә
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызык тигезләмәсе
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бер үк вакытта тигезләмә
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграция
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Чикләр
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}